References
- Curty, RG, Crowston, K, Specht, A, et al. 2017. Attitudes and norms affecting scientists’ data reuse. PLOS ONE, 12:
e0189288 . DOI: 10.1371/journal.pone.0189288 - David, R, Mabile, L, Specht, A, et al. 2020.
Templates for FAIRness evaluation criteria – RDA-SHARC ig (Version 1.1) [Data set] . Zenodo. DOI: 10.5281/zenodo.3922069 - de Miranda Azevedo, R and Dumontier, M. 2019. Considerations for the Conduction and Interpretation of FAIRness Evaluations. Data Intelligence, 285–292. DOI: 10.1162/dint_a_00051
- Doorn, P and Science Europe. 2018. Science Europe Guidance. Presenting a Framework for Discipline-specific Research Data Management. [WWW Document]. URL
http://www.scienceeurope.org/wp-content/uploads/2018/01/SE_Guidance_Document_RDMPs.pdf [Accessed January 07, 2020]. - Doorn, P and Timmermann, M. 2018. Towards Domain Protocols for Research Data Management (IG Domain Repositories RDA 9th Plenary meeting Community-driven Research Data Management). Paper presented at the 9. Plenary meeting Community-driven Research Data Management, Barcelona.
https://www.rd-alliance.org/sites/default/files/attachment/RDA%20DRIG%20Domain%20Protocols%20V3%20Barcelona%20April%202017%20-%20DoornAerts.pptx [Accessed January 07, 2020]. - Erdmann, C, Simons, N, Otsuji, R, et al. 2019. Top 10 FAIR Data & Software Things. [WWW Document]. [Accessed January 07, 2020]. DOI: 10.5281/zenodo.2555498
- European Commission Directorate General for Research and Innovation (EC DGRI). 2016.
E.U. H2020 Programme Guidelines on FAIR Data Management in Horizon 2020, Version 3.0 . Luxembourg: Publications Office of the EU. [WWW Document], URLhttps://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-data-mgt_en.pdf [Accessed January 07, 2020]. - European Commission Directorate General for Research and Innovation (EC DGRI). 2017.
Evaluation of Research Careers fully acknowledging Open Science Practices; Rewards, incentives and/or recognition for researchers practicing Open Science . Luxembourg: Publications Office of the EU. [WWW Document]. URLhttps://ec.europa.eu/research/openscience/pdf/os_rewards_wgreport_final.pdf [Accessed January 07, 2020]. - European Commission Directorate General for Research and Innovation (EC DGRI). 2018.
Turning FAIR into reality: final report and action plan from the European Commission expert group on FAIR data . Luxembourg: Publications Office of the EU. [WWW Document]. URLhttps://op.europa.eu:443/en/publication-detail/-/publication/7769a148-f1f6-11e8-9982-01aa75ed71a1/language-en/format-PDF [Accessed January 07, 2020]. - Federer, LM, Belter, CW, Joubert, DJ, et al. 2018. Data sharing in PLOS ONE: An analysis of Data Availability Statements. PLOS ONE, 13:
e0194768 . DOI: 10.1371/journal.pone.0194768 - Hansen, KK, Buss, M and Sztuk Haahr, L. 2018. A FAIRy tale. Zenodo. [WWW Document]. DOI: 10.5281/zenodo.2248200
- Herschel, M, Diestelkämper, R and Ben Lahmar, H. 2017. A survey on provenance: What for? What form? What from? The VLDB Journal, 26: 881–906. DOI: 10.1007/s00778-017-0486-1
- Jacobsen, A, de Miranda Azevedo, R, Juty, N, et al. 2019. FAIR Principles: Interpretations and Implementation Considerations. Data Intelligence, 10–29. DOI: 10.1162/dint_r_00024
- Jones, S, Pergl, R, Hooft, R, et al. 2019. Data Management Planning: How Requirements and Solutions are Beginning to Converge. Data Intelligence, 208–219. DOI: 10.1162/dint_a_00043
- Landi, A, Thompson, M, Giannuzzi, V, et al. 2019. The “A” of FAIR – As Open as Possible, as Closed as Necessary. Data Intelligence, 47–55. DOI: 10.1162/dint_a_00027
- Lannom, L, Koureas, D and Hardisty, AR. 2019. FAIR Data and Services in Biodiversity Science and Geoscience. Data Intelligence, 122–130. DOI: 10.1162/dint_a_00034
- Mabile, L, De Castro, P, Bravo, E, et al. 2016. Towards new tools for bioresource use and sharing. Information Services & Use, 36: 133–146. DOI: 10.3233/ISU-160811
- McQuilton, P, Batista, D, Beyan, O, et al. 2019. Helping the Consumers and Producers of Standards, Repositories and Policies to Enable FAIR Data. Data Intelligence, 151–157. DOI: 10.1162/dint_a_00037
- Mons, B, Neylon, C, Velterop, J, et al. 2017. Cloudy, increasingly FAIR; revisiting the FAIR Data guiding principles for the European Open Science Cloud. Information Services & Use, 37: 49–56. DOI: 10.3233/ISU-170824
- Reymonet, N, Moysan, M, Cartier, A, et al. 2018. Réaliser un plan de gestion de données «FAIR»: modèle. [WWW Document]. URL
https://archivesic.ccsd.cnrs.fr/sic_01690547/document [Accessed January 10, 2020]. - Sansone, S-A, McQuilton, P, Rocca-Serra, P, et al. 2019. FAIRsharing as a community approach to standards, repositories and policies. Nat Biotechnol, 37: 358–367. DOI: 10.1038/s41587-019-0080-8
- Schultes, E, Strawn, G and Mons, B. 2018. Ready, Set, GO FAIR: Accelerating Convergence to an Internet of FAIR Data and Services. DAMDID/RCDL.
http://ceur-ws.org/Vol-2277/paper07.pdf . - Schwardmann, U. 2020. Digital Objects – FAIR Digital Objects: Which Services Are Required? Data Science Journal, 19(1): 15. DOI: 10.5334/dsj-2020-015
- Stall, S, Cruse, P, Cousijn, H, et al. 2018. Data Sharing and Citations: New Author Guidelines Promoting Open and FAIR Data in the Earth, Space, and Environmental Sciences. Science Editor, 41: 83–87.
https://www.csescienceeditor.org/wp-content/uploads/2018/11/CSEv41n3_text_83-87.pdf [Accessed January 07, 2020]. - Sustkova, HP, Hettne, KM, Wittenburg, P, et al. 2019. FAIR Convergence Matrix: Optimizing the Reuse of Existing FAIR-Related Resources. Data Intelligence, 158–170. DOI: 10.1162/dint_a_00038
- Thompson, M, Burger, K, Kaliyaperumal, R, et al. 2019. Making FAIR Easy with FAIR Tools: From Creolization to Convergence. Data Intelligence, 87–95. DOI: 10.1162/dint_a_00031
- Wilkinson, MD, Dumontier, M, Aalbersberg, IjJ, et al. 2016. The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3: 160018. DOI: 10.1038/sdata.2016.18
- Wilkinson, MD, Dumontier, M, Sansone, S-A, et al. 2019. Evaluating FAIR maturity through a scalable, automated, community-governed framework. Scientific Data, 6: 1–12. DOI: 10.1038/s41597-019-0184-5
- Wilkinson, MD, Sansone, S-A, Schultes, E, et al. 2018. A design framework and exemplar metrics for FAIRness. Scientific Data 5. DOI: 10.1038/sdata.2018.118
- Wilkinson, MD, Verborgh, R, da Silva Santos, LOB, et al. 2017. Interoperability and FAIRness through a novel combination of Web technologies (No. e2522v2). PeerJ Inc. DOI: 10.7287/peerj.preprints.2522v2
- Wittenburg, P, Sustkova, HP, Montesanti, A, et al. 2019. The FAIR Funder pilot programme to make it easy for funders to require and for grantees to produce FAIR Data. [WWW Document]. URL
https://arxiv.org/abs/1902.11162? [Accessed January 07, 2020].
