References
- 1Agrawal, A and Choudhary, A. 2016. Perspective: materials informatics and big data: realization of the Fourth paradigm of science in materials science. APL Materials, 4:
053208 , 1–10. DOI: 10.1063/1.4946894 - 2Arnold, P and Rahm, E. 2013. Semantic enrichment of ontology mappings: A linguisticbased approach. In: Catania, B, Guerrini, G and Pokorny, J (eds.), 17th East European Conference on Advances in Databases and Information Systems, 42–55. DOI: 10.1007/978-3-642-40683-6
- 3Arp, R, Smith, B and Spear, AD. 2015. Building Ontologies with Basic Formal Ontology. The MIT Press. DOI: 10.7551/mitpress/9780262527811.001.0001
- 4Ashino, T. 2010. Materials Ontology: An Infrastructure for Exchanging Materials Information and Knowledge. Data Science Journal, 9: 54–61. DOI: 10.2481/dsj.008-041
- 5Asim, MN, Wasim, M, Khan, MUG, Mahmood, W and Abbasi, HM. 2018. A survey of ontology learning techniques and applications. Database, 2018:
bay101 , 1–24. DOI: 10.1093/database/bay101 - 6Austin, T. 2016. Towards a digital infrastructure for engineering materials data. Materials Discovery, 3: 1–12. DOI: 10.1016/j.md.2015.12.003
- 7Baader, F, Calvanese, D, McGuinness, DL, Nardi, D and Patel-Schneider, PF. 2010. The Description Logic Handbook: Theory, Implementation and Applications. 2nd edn. Cambridge University Press.
- 8Bhat, M, Shah, S, Das, P, Kumar, P, Kulkarni, N, Ghaisas, SS and Reddy, SS. 2013.
Premlp: knowledge driven design of materials and engineering process . ICoRD’13, 1315–1329. Springer. DOI: 10.1007/978-81-322-1050-4_105 - 9Buitelaar, P, Cimiano, P and Magnini, B. 2005. Ontology Learning from Text: Methods, Evaluation and Applications. IOS Press.
- 10Cheng, X, Hu, C and Li, Y. 2014. A semantic-driven knowledge representation model for the materials engineering application. Data Science Journal, 13: 26–44. DOI: 10.2481/dsj.13-061
- 11Cheung, K, Drennan, J and Hunter, J. 2008. Towards an Ontology for Data-driven Discovery of New Materials. Semantic Scientific Knowledge Integration AAAI/SSS Workshop, 9–14.
- 12Cimiano, P, Hotho, A and Staab, S. 2005. Learning concept hierarchies from text corpora using formal concept analysis. Journal of Artificial Intelligence Research, 24: 305–339. DOI: 10.1613/jair.1648
- 13Cimiano, P and Völker, J. 2005. Text2Onto. In: Montoyo, A, Muñoz, R and Métais, E (eds.), Natural Language Processing and Information Systems, 10th International Conference on Applications of Natural Language to Information Systems, NLDB 2005, Alicante, Spain,
June 15–17, 2005 , Proceedings, 227–238. - 14de Matos, P, Dekker, A, Ennis, M, Hastings, J, Haug, K, Turner, S and Steinbeck, C. 2010. ChEBI: a chemistry ontology and database. Journal of cheminformatics, 2(S1):
P6 , 1. DOI: 10.1186/1758-2946-2-S1-P6 - 15Dos Reis, J, Dinh, D, Pruski, C, Da Silveira, M and Reynaud-Delaitre, C. 2013. Mapping adaptation actions for the automatic reconciliation of dynamic ontologies. 22nd ACM International Conference on Information and Knowledge Management, 599–608. DOI: 10.1145/2505515.2505564
- 16Draxl, C and Scheffler, M. 2018. Nomad: The fair concept for big data-driven materials science. MRS Bulletin, 43(9): 676–682. DOI: 10.1557/mrs.2018.208
- 17Drymonas, E, Zervanou, K and Petrakis, EG. 2010. Unsupervised ontology acquisition from plain texts: the OntoGain system. International Conference on Application of Natural Language to Information Systems, 277–287. DOI: 10.1007/978-3-642-13881-2_29
- 18El-Kishky, A, Song, Y, Wang, C, Voss, CR and Han, J. 2014. Scalable topical phrase mining from text corpora. Proceedings of the VLDB Endowment, 8(3): 305–316. DOI: 10.14778/2735508.2735519
- 19European Committee for Standardization. 2010. A guide to the development and use of standards compliant data formats for engineering materials test data.
- 20European Materials Modelling Council. 2017. Report on workshop on interoperability in materials modelling.
- 21Faure, D and Poibeau, T. 2000. First experiments of using semantic knowledge learned by ASIUM for information extraction task using INTEX. ECAI-2000 Ontology Learning Workshop, 7–12.
- 22Galke, L, Mai, F, Schelten, A, Brunsch, D and Scherp, A. 2017. Using titles vs. full-text as source for automated semantic document annotation. In: Corcho, Ó, Janowicz, K, Rizzo, G, Tiddi, I and Garijo, D (eds.), Proceedings of the Knowledge Capture Conference, K-CAP 2017, Austin, TX, USA,
December 4–6, 2017 , 20: 1–4. DOI: 10.1145/3148011.3148039 - 23Ganter, B and Wille, R. 2012. Formal concept analysis: mathematical foundations. Springer Science & Business Media.
- 24Ghiringhelli, LM, Carbogno, C, Levchenko, S, Mohamed, F, Huhs, G, Lueders, M, Oliveira, M and Scheffler, M. 2016. Towards a Common Format for Computational Materials Science Data. PSI-K Scientific Highlights. July.
- 25Hartung, M, Terwilliger, J and Rahm, E. 2011. Recent advances in schema and ontology evolution. In: Bellahsene, Z, Bonifati, A and Rahm, E (eds.), Schema Matching and Mapping, 149–190. DOI: 10.1007/978-3-642-16518-4
- 26Hastings, J, Jeliazkova, N, Owen, G, Tsiliki, G, Munteanu, CR, Steinbeck, C and Willighagen, E. 2015. eNanoMapper: harnessing ontologies to enable data integration for nanomaterial risk assessment. Journal of Biomedical Semantics, 6:
10 , 1–15. DOI: 10.1186/s13326-015-0005-5 - 27Hearst, MA. 1992. Automatic acquisition of hyponyms from large text corpora. 14th International Conference on Computational Linguistics, 539–545. DOI: 10.3115/992133.992154
- 28Ivanova, V, Bergman, JL, Hammerling, U and Lambrix, P. 2012. Debugging Taxonomies and their Alignments: the ToxOntology – MeSH Use Case. In: Lambrix, P, Qi, G and Horridge, M (eds.), Proceedings of the First International Workshop on Debugging Ontologies and Ontology Mappings, WoDOOM 2012, Galway, Ireland,
October 8, 2012 , 25–36. - 29Ivanova, V and Lambrix, P. 2013. A unified approach for aligning taxonomies and debugging taxonomies and their alignments. In: Cimiano, P, Corcho, Ó, Presutti, V, Hollink, L and Rudolph, S (eds.), The Semantic Web: Semantics and Big Data, 10th International Conference,
ESWC 2013 , Montpellier, France,May 26–30, 2013 , Proceedings, 1–15. DOI: 10.1007/978-3-642-38288-8 - 30Jiang, X and Tan, AH. 2010. CRCTOL: A semantic-based domain ontology learning system. Journal of the American Society for Information Science and Technology, 61(1): 150–168. DOI: 10.1002/asi.21231
- 31Kalidindi, SR and De Graef, M. 2015. Materials data science: current status and future outlook. Annual Review of Materials Research, 45: 171–193. DOI: 10.1146/annurev-matsci-070214-020844
- 32Karcher, S, Willighagen, EL, Rumble, J, Ehrhart, F, Evelo, CT, Fritts, M, Gaheen, S, Harper, SL, Hoover, MD, Jeliazkova, N, Lewinski, N, Robinson, RLM, Mills, KC, Mustad, AP, Thomas, DG, Tsiliki, G and Hendren, CO. 2018. Integration among databases and data sets to support productive nanotechnology: Challenges and recommendations. NanoImpact, 9: 85–101. DOI: 10.1016/j.impact.2017.11.002
- 33Lambrix, P. 2005. Towards a semantic web for bioinformatics using ontology-based annotation. 14th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise (WETICE’05), 3–7. DOI: 10.1109/WETICE.2005.58
- 34Lambrix, P. 2019. Completing and debugging ontologies: state of the art and challenges. arXiv: 1908.03171.
- 35Lambrix, P, Armiento, R, Delin, A and Li, H. 2019. Big semantic data processing in the materials design domain. In: Sakr, S and Zomaya, AY (eds.), Encyclopedia of Big Data Technologies. DOI: 10.1007/978-3-319-63962-8
- 36Lambrix, P, Wei-Kleiner, F and Dragisic, Z. 2015. Completing the is-a structure in light-weight ontologies. Journal of Biomedical Semantics, 6:
12 , 1–26. DOI: 10.1186/s13326-015-0002-8 - 37Lin, Z, Lu, R, Xiong, Y and Zhu, Y. (2012). Learning ontology automatically using topic model. IEEE International Conference on Biomedical Engineering and Biotechnology, 360–363. DOI: 10.1109/iCBEB.2012.263
- 38Liu, Q and Lambrix, P. 2010. A System for Debugging Missing Is-a Structure in Networked Ontologies. In: Lambrix, P and Kemp, G (eds.), Data Integration in the Life Sciences, 7th International Conference, DILS 2010, Gothenburg, Sweden,
August 25–27, 2010 , Proceedings, 50–57. DOI: 10.1007/978-3-642-15120-0 - 39Maedche, A, Pekar, V and Staab, S. 2003.
Ontology learning part one – on discovering taxonomic relations from the web . In: Zhong, N, Liu, J and Yao, Y (eds.), Web Intelligence, 301–320. Springer. DOI: 10.1007/978-3-662-05320-1 - 40Maedche, A and Staab, S. 2000. Discovering conceptual relations from text. 14th European Conference on Arti_cial Intelligence, 321–325.
- 41Navigli, R and Velardi, P. 2004. Learning domain ontologies from document warehouses and dedicated web sites. Computational Linguistics, 30(2): 151–179. DOI: 10.1162/089120104323093276
- 42Navigli, R, Velardi, P, Cucchiarelli, A, Neri, F and Cucchiarelli, R. 2004. Extending and enriching WordNet with OntoLearn. Proc. 2nd Global WordNet Conf.
(GWC) , 279–284. - 43Radinger, A, Rodriguez-Castro, B, Stolz, A and Hepp, M. 2013. Baudataweb: the Austrian building and construction materials market as linked data. 9th International Conference on Semantic Systems, 25–32.
ACM . DOI: 10.1145/2506182.2506186 - 44Rani, M, Dhar, AK and Vyas, OP. 2017. Semi-automatic terminology ontology learning based on topic modeling. Engineering Applications of Artificial Intelligence, 63: 108–125. DOI: 10.1016/j.engappai.2017.05.006
- 45Rumble, J, Broome, J and Hodson, S. 2019. Building an international consensus on multi-disciplinary metadata standards: A codata case history in nanotechnology. Data Science Journal, 8:
12 : 1–11. DOI: 10.5334/dsj-2019-012 - 46Schaal, M, Müller, RM, Brunzel, M and Spiliopoulou, M. 2005. RELFIN – topic discovery for ontology enhancement and annotation. In: Gómez-Pérez, A and Euzenat, J (eds.), The Semantic Web: Research and Applications, Second European Semantic Web Conference,
ESWC 2005 , Heraklion, Crete, Greece,May 29 – June 1, 2005 , Proceedings, 608–622. DOI: 10.1007/11431053_41 - 47Spiliopoulos, V, Vouros, GA and Karkaletsis, V. 2010. On the discovery of subsumption relations for the alignment of ontologies. Journal of Web Semantics, 8: 69–88. DOI: 10.1016/j.websem.2010.01.001
- 48Stevens, R, Goble, CA and Bechhofer, S. 2000. Ontology-based knowledge representation for bioinformatics. Briefings in Bioinformatics, 1(4): 398–414. DOI: 10.1093/bib/1.4.398
- 49Steyvers, M and Griffiths, T. 2007. Probabilistic topic models. In: Landauer, TK, McNamara, DS, Dennis, S and Kintsch, W (eds.), Latent semantic analysis: A road to meaning.
- 50Thomas, DG, Pappu, RV and Baker, NA. 2011. Nanoparticle ontology for cancer nanotechnology research. Journal of Biomedical Informatics, 44(1): 59–74. DOI: 10.1016/j.jbi.2010.03.001
- 51Tropsha, A, Mills, KC and Hickey, AJ. 2017. Reproducibility, sharing and progress in nanomaterial databases. Nature nanotechnology, 12: 1111–1114. DOI: 10.1038/nnano.2017.233
- 52Vardeman, C,
II , Krisnadhi, A, Cheatham, M, Janowicz, K, Ferguson, H, Hitzler, P and Buccellato, A. 2017. An ontology design pattern and its use case for modeling material transformation. Semantic Web, 8(5): 719–731. DOI: 10.3233/SW-160231 - 53Wächter, T, Tan, H, Wobst, A, Lambrix, P and Schroeder, M. 2006. A corpus-driven approach for design, evolution and alignment of ontologies. Winter Simulation Conference, 1595–1602. DOI: 10.1109/WSC.2006.322932
- 54Wilkinson, MD, Dumontier, M, Aalbersberg, IJ, Appleton, G, Axton, M, Baak, A, Blomberg, N, Boiten, JW, da Silva Santos, LB, Bourne, PE, Bouwman, J, Brookes, AJ, Clark, T, Crosas, M, Dillo, I, Dumon, O, Edmunds, S, Evelo, CT, Finkers, R, Gonzalez-Beltran, A, Gray, AJ, Groth, P, Goble, C, Grethe, JS, Heringa, J, ‘t Hoen, PA, Hooft, R, Kuhn, T, Kok, R, Kok, J, Lusher, SJ, Martone, ME, Mons, A, Packer, AL, Persson, B, Rocca-Serra, P, Roos, M, van Schaik, R, Sansone, SA, Schultes, E, Sengstag, T, Slater, T, Strawn, G, Swertz, MA, Thompson, M, van der Lei, J, van Mulligen, E, Velterop, J, Waagmeester, A, Wittenburg, P, Wolstencroft, K, Zhao, J and Mons, B. 2016. The FAIR guiding principles for scientific data management and stewardship. Scientific data, 3:
160018 , 1–9. DOI: 10.1038/sdata.2016.18 - 55Wong, W, Liu, W and Bennamoun, M. 2012. Ontology learning from text: A look back and into the future. ACM Computing Surveys (CSUR), 44(4): 20. DOI: 10.1145/2333112.2333115
- 56Zavitsanos, E, Paliouras, G, Vouros, GA and Petridis, S. (2007). Discovering subsumption hierarchies of ontology concepts from text corpora. IEEE/WIC/ACM International Conference on Web Intelligence, 402–408. DOI: 10.1109/WI.2007.55
- 57Zhang, X, Chen, H, Ruan, Y, Pan, D and Zhao, C. 2017. MATVIZ: a semantic query and visualization approach for metallic materials data. International Journal of Web Information Systems, 13: 260–280. DOI: 10.1108/IJWIS-11-2016-0065
- 58Zhang, X, Zhao, C and Wang, X. 2015. A survey on knowledge representation in materials science and engineering: An ontological perspective. Computers in Industry, 73: 8–22. DOI: 10.1016/j.compind.2015.07.005
- 59Zhang, Y, Luo, X, Zhao, Y and Zhang, HC. 2015. An ontology-based knowledge framework for engineering material selection. Advanced Engineering Informatics, 29: 985–1000. DOI: 10.1016/j.aei.2015.09.002
