Have a personal or library account? Click to login
Analysis of Rainfall and Temperature Data Using Ensemble Empirical Mode Decomposition Cover

Analysis of Rainfall and Temperature Data Using Ensemble Empirical Mode Decomposition

Open Access
|Sep 2019

References

  1. Alizadeh, F, Roushangar, K and Adamowski, J. 2019. Investigating monthly precipitation variability using a multiscale approach based on ensemble empirical mode decomposition. Paddy and Water Environment, 119. DOI: 10.1007/s10333-019-00754-x
  2. Cazelles, B and Stone, L. 2003. Detection of imperfect population synchrony in an uncertain world. Journal of Animal Ecology, 72(6), 953968. DOI: 10.1046/j.1365-2656.2003.00763.x
  3. Chiew, FHS, Peel, MC, Amirthanathan, GE and Pegram, GGS. 2005. Identification of oscillations in historical global streamflow data using empirical mode decomposition. IAHS PUBLICATION, 296: 5364.
  4. DEA 2011. South Africa’s Second National Communication under the United Nations Framework Convention on Climate Change.
  5. Dieppois, B, Pohl, B, Rouault, M, New, M, Lawler, D and Keenlyside, N. 2016. Interannual to interdecadal variability of winter and summer southern African rainfall, and their teleconnections. Journal of Geophysical Research: Atmospheres, 121(11): 62156239. DOI: 10.1002/2015JD024576
  6. Fauchereau, N, Pohl, B, Reason, CJC, Rouault, M and Richard, Y. 2009. Recurrent daily OLR patterns in the Southern Africa/Southwest Indian Ocean region, implications for South African rainfall and teleconnections. Climate Dynamics, 32(4): 575591. DOI: 10.1007/s00382-008-0426-2
  7. Hawinkel, P, Swinnen, E, Lhermitte, S, Verbist, B, Van Orshoven, J and Muys, B. 2015. A time series processing tool to extract climate-driven interannual vegetation dynamics using ensemble empirical mode decomposition (EEMD). Remote Sensing of Environment, 169: 375389. DOI: 10.1016/j.rse.2015.08.024
  8. Hawinkel, P, Thiery, W, Lhermitte, S, Swinnen, E, Verbist, B, Van Orshoven, J and Muys, B. 2016. Vegetation response to precipitation variability in East Africa controlled by biogeographical factors. Journal of Geophysical Research: Biogeosciences, 121(9): 24222444. DOI: 10.1002/2016JG003436
  9. Huang, NE, Shen, Z and Long, SR. 1999. A new review of non-linear water waves: the Hilbert spectrum. Annual Review of Fluid Mechanics, 31: 417457. DOI: 10.1146/annurev.fluid.31.1.417
  10. Huang, NEZ, Shen, R, Long, S, Wu, MC, Shih, HH, Zheng, Q, Yen, NC, Tung, V and Liu, HH. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceeding of the Royal Society of London, Series A. DOI: 10.1098/rspa.1998.0193
  11. Kane, R. 2009. Periodicities, ENSO effects and trends of some South African rainfall series: an update. South African Journal of Science, 105(5–6): 199207. DOI: 10.4102/sajs.v105i5/6.90
  12. Kim, T, Shin, JY, Kim, S and Heo, JH. 2018. Identification of relationships between climate indices and long-term precipitation in South Korea using ensemble empirical mode decomposition. Journal of Hydrology, 557: 726739. DOI: 10.1016/j.jhydrol.2017.12.069
  13. Kruger, AC and Nxumalo, MP. 2017. Historical rainfall trends in South Africa: 1921–2015. Water SA, 43(2): 285297. DOI: 10.4314/wsa.v43i2.12
  14. Kruger, AC and Shongwe, S. 2004. Temperature trends in South Africa: 1960–2003. International Journal of Climatology: A Journal of the Royal Meteorological Society, 24(15): 19291945. DOI: 10.1002/joc.1096
  15. Lehodey, P, Bertignac, M, Hampton, J, Lewis, A and Picaut, J. 1997. El Niño southern oscillation and tuna in the western pacific. Nature, 389(6652): 715718. DOI: 10.1038/39575
  16. Liu, H, Zhan, Q, Yang, C and Wang, J. 2019. The multi-timescale temporal patterns and dynamics of land surface temperature using Ensemble Empirical Mode Decomposition. Science of the Total Environment, 652: 243255. DOI: 10.1016/j.scitotenv.2018.10.252
  17. MacKellar, N, New, M and Jack, C. 2014. Observed and modelled trends in rainfall and temperature for South Africa: 1960–2010. South African Journal of Science, 110(7–8): 113. DOI: 10.1590/sajs.2014/20130353
  18. Maúre, G, Pinto, I, Ndebele-Murisa, M, Muthige, M, Lennard, C, Nikulin, G, Meque, A, et al. 2018. The southern African climate under 1.5 C and 2 C of global warming as simulated by CORDEX regional climate models. Environmental Research Letters, 13(6): 065002. DOI: 10.1088/1748-9326/aab190
  19. Maxmen, A. 2018. As Cape Town water crisis deepens, scientists prepare for ‘Day Zero’. Nature, 554(7690). DOI: 10.1038/d41586-018-01134-x
  20. Molla, MKI, Rahman, MS, Sumi, A and Banik, P. 2006. Empirical mode decomposition analysis of climate changes with special reference to rainfall data. Discrete dynamics in Nature and Society, 2006. DOI: 10.1155/DDNS/2006/45348
  21. Nangombe, S, Zhou, T, Zhang, W, Wu, B, Hu, S, Zou, L and Li, D. 2018. Record-breaking climate extremes in Africa under stabilized 1.5 C and 2 C global warming scenarios. Nature Climate Change, 8(5): 375. DOI: 10.1038/s41558-018-0145-6
  22. Nikulin, G, Lennard, C, Dosio, A, Kjellström, E, Chen, Y, Hänsler, A, van Meijgaard, E, et al. 2018. The effects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble. Environmental Research Letters, 13(6): 065003. DOI: 10.1088/1748-9326/aab1b1
  23. Philippon, N, Rouault, M, Richard, Y and Favre, A. 2012. The influence of ENSO on winter rainfall in South Africa. International Journal of Climatology, 32(15): 23332347. DOI: 10.1002/joc.3403
  24. Rosenblum, M, Pikovsky, A, Kurths, J, Schäfer, C and Tass, PA. 2001. Phase synchronization: from theory to data analysis. In: Handbook of biological physics, 4: 279321. North-Holland. DOI: 10.1016/S1383-8121(01)80012-9
  25. Schulte, JA. 2016. Wavelet analysis for non-stationary, nonlinear time series. Nonlinear Processes in Geophysics, 23(4): 257. DOI: 10.5194/npg-23-257-2016
  26. Sun, C and Ma, Y. 2015. Effects of non-linear temperature and precipitation trends on Loess Plateau droughts. Quaternary International, 372: 175179. DOI: 10.1016/j.quaint.2015.01.051
  27. Van Buuren, S and Groothuis-Oudshoorn, K. 2011. mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3): 167. DOI: 10.18637/jss.v045.i03
  28. van Oldenborgh, GJ and Burgers, G. 2005. Searching for decadal variations in ENSO precipitation teleconnections. Geophys. Res. Lett., 32(15): L15701. DOI: 10.1029/2005GL023110
  29. Wolski, P. 2018. How severe is Cape Town’s “Day Zero” drought? Significance, 15(2): 2427. DOI: 10.1111/j.1740-9713.2018.01127.x
  30. Wu, Z and Huang, NE. 2009. Ensemble Empirical Mode Decomposition: A noise-assisted data analysis method. Advanced Adaptive Data Analysis, 1: 141. DOI: 10.1142/S1793536909000047
  31. Yang, Q, Ma, Z and Xu, B. 2017. Modulation of monthly precipitation patterns over East China by the Pacific Decadal Oscillation. Climatic change, 144(3): 405417. DOI: 10.1007/s10584-016-1662-9
Language: English
Submitted on: Jan 12, 2019
|
Accepted on: Sep 12, 2019
|
Published on: Sep 25, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Willard Zvarevashe, Symala Krishnannair, Venkataraman Sivakumar, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.