References
- 1Aiello, W, Chung, F and Lu, L. 2000. ‘A random graph model for massive graphs’. In: Proceedings of the thirty-second annual ACM symposium on Theory of computing – STOC’00. DOI: 10.1145/335305.335326
- 2Blondel, VD, et al. 2012. ‘Data for Development: the D4D Challenge on Mobile Phone Data’. arXiv:1210.0137, 1–10. Available at:
http://arxiv.org/abs/1210.0137 . - 3Blondel, VD, Decuyper, A and Krings, G. 2015. ‘A survey of results on mobile phone datasets analysis’. EPJ Data Science. DOI: 10.1140/epjds/s13688-015-0046-0
- 4Demissie, MG, et al. 2016. ‘Inferring Passenger Travel Demand to Improve Urban Mobility in Developing Countries Using Cell Phone Data: A Case Study of Senegal’. IEEE Transactions on Intelligent Transportation Systems, 17(9). DOI: 10.1109/TITS.2016.2521830
- 5Frias-Martinez, V, Frias-Martinez, E and Oliver, N. 2010. ‘A Gender-Centric Analysis of Calling Behavior in a Developing Economy Using Call Detail Records.’. … Intelligence for Development.
- 6Jahani, E, et al. 2017. ‘Improving official statistics in emerging markets using machine learning and mobile phone data’. EPJ Data Science. DOI: 10.1140/epjds/s13688-017-0099-3
- 7Kiukkonen, N, et al. 2010. ‘Towards rich mobile phone datasets: Lausanne data collection campaign’. Proceedings ACM International Conference on Pervasive Services (ICPS).
- 8Laurila, JK, et al. 2012. ‘The mobile data challenge: Big data for mobile computing research’. Proceedings of the Workshop on the Nokia Mobile Data Challenge, in Conjunction with the 10th International Conference on Pervasive Computing. DOI: 10.1016/j.pmcj.2013.07.014
- 9Miritello, G, Moro, E and Lara, R. 2011. ‘Dynamical strength of social ties in information spreading’. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics. DOI: 10.1103/PhysRevE.83.045102
- 10Montjoye, YDe and Smoreda, Z. 2014. ‘D4D-Senegal: The Second Mobile Phone Data for Development Challenge’. arXiv.
- 11Navarro, H, et al. 2017. ‘Temporal patterns behind the strength of persistent ties’. EPJ Data Science. DOI: 10.1140/epjds/s13688-017-0127-3
- 12Onnela, J-P, et al. 2006. ‘Structure and tie strengths in mobile communication networks’. Proceedings of the National Academy of Sciences (PNAS), 104(18): 7332–7336. DOI: 10.1073/pnas.0610245104
- 13Phithakkitnukoon, S, et al. 2017. ‘Inferring social influence in transport mode choice using mobile phone data’. EPJ Data Science, 6(1). DOI: 10.1140/epjds/s13688-017-0108-6
- 14Phithakkitnukoon, S and Dantu, R. 2011. ‘Mobile social group sizes and scaling ratio’. AI and Society, 26(1). DOI: 10.1007/s00146-009-0230-5
- 15Phithakkitnukoon, S, Smoreda, Z and Olivier, P. 2012. ‘Socio-geography of human mobility: A study using longitudinal mobile phone data’. PLoS ONE, 7(6). DOI: 10.1371/journal.pone.0039253
- 16Saramäki, J and Moro, E. 2015. ‘From seconds to months: an overview of multi-scale dynamics of mobile telephone calls’. European Physical Journal B. DOI: 10.1140/epjb/e2015-60106-6
- 17Song, C, et al. 2010. ‘Limits of predictability in human mobility’. Science. DOI: 10.1126/science.1177170
- 18Vaz De Melo, POS, et al. 2010. ‘Surprising patterns for the call duration distribution of mobile phone users’. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). DOI: 10.1007/978-3-642-15939-8_23
