Have a personal or library account? Click to login
Resembling Population Density Distribution with Massive Mobile Phone Data Cover

Resembling Population Density Distribution with Massive Mobile Phone Data

Open Access
|Oct 2018

References

  1. 1Aiello, W, Chung, F and Lu, L. 2000. ‘A random graph model for massive graphs’. In: Proceedings of the thirty-second annual ACM symposium on Theory of computing – STOC’00. DOI: 10.1145/335305.335326
  2. 2Blondel, VD, et al. 2012. ‘Data for Development: the D4D Challenge on Mobile Phone Data’. arXiv:1210.0137, 110. Available at: http://arxiv.org/abs/1210.0137.
  3. 3Blondel, VD, Decuyper, A and Krings, G. 2015. ‘A survey of results on mobile phone datasets analysis’. EPJ Data Science. DOI: 10.1140/epjds/s13688-015-0046-0
  4. 4Demissie, MG, et al. 2016. ‘Inferring Passenger Travel Demand to Improve Urban Mobility in Developing Countries Using Cell Phone Data: A Case Study of Senegal’. IEEE Transactions on Intelligent Transportation Systems, 17(9). DOI: 10.1109/TITS.2016.2521830
  5. 5Frias-Martinez, V, Frias-Martinez, E and Oliver, N. 2010. ‘A Gender-Centric Analysis of Calling Behavior in a Developing Economy Using Call Detail Records.’. … Intelligence for Development.
  6. 6Jahani, E, et al. 2017. ‘Improving official statistics in emerging markets using machine learning and mobile phone data’. EPJ Data Science. DOI: 10.1140/epjds/s13688-017-0099-3
  7. 7Kiukkonen, N, et al. 2010. ‘Towards rich mobile phone datasets: Lausanne data collection campaign’. Proceedings ACM International Conference on Pervasive Services (ICPS).
  8. 8Laurila, JK, et al. 2012. ‘The mobile data challenge: Big data for mobile computing research’. Proceedings of the Workshop on the Nokia Mobile Data Challenge, in Conjunction with the 10th International Conference on Pervasive Computing. DOI: 10.1016/j.pmcj.2013.07.014
  9. 9Miritello, G, Moro, E and Lara, R. 2011. ‘Dynamical strength of social ties in information spreading’. Physical Review E – Statistical, Nonlinear, and Soft Matter Physics. DOI: 10.1103/PhysRevE.83.045102
  10. 10Montjoye, YDe and Smoreda, Z. 2014. ‘D4D-Senegal: The Second Mobile Phone Data for Development Challenge’. arXiv.
  11. 11Navarro, H, et al. 2017. ‘Temporal patterns behind the strength of persistent ties’. EPJ Data Science. DOI: 10.1140/epjds/s13688-017-0127-3
  12. 12Onnela, J-P, et al. 2006. ‘Structure and tie strengths in mobile communication networks’. Proceedings of the National Academy of Sciences (PNAS), 104(18): 73327336. DOI: 10.1073/pnas.0610245104
  13. 13Phithakkitnukoon, S, et al. 2017. ‘Inferring social influence in transport mode choice using mobile phone data’. EPJ Data Science, 6(1). DOI: 10.1140/epjds/s13688-017-0108-6
  14. 14Phithakkitnukoon, S and Dantu, R. 2011. ‘Mobile social group sizes and scaling ratio’. AI and Society, 26(1). DOI: 10.1007/s00146-009-0230-5
  15. 15Phithakkitnukoon, S, Smoreda, Z and Olivier, P. 2012. ‘Socio-geography of human mobility: A study using longitudinal mobile phone data’. PLoS ONE, 7(6). DOI: 10.1371/journal.pone.0039253
  16. 16Saramäki, J and Moro, E. 2015. ‘From seconds to months: an overview of multi-scale dynamics of mobile telephone calls’. European Physical Journal B. DOI: 10.1140/epjb/e2015-60106-6
  17. 17Song, C, et al. 2010. ‘Limits of predictability in human mobility’. Science. DOI: 10.1126/science.1177170
  18. 18Vaz De Melo, POS, et al. 2010. ‘Surprising patterns for the call duration distribution of mobile phone users’. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). DOI: 10.1007/978-3-642-15939-8_23
Language: English
Submitted on: Jun 12, 2018
Accepted on: Sep 17, 2018
Published on: Oct 3, 2018
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2018 Teerayut Horanont, Thananut Phiboonbanakit, Santi Phithakkitnukoon, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.