References
- 1Agarwal, R and Srikant, R. 1994. Fast algorithms for mining association rules in large databases. In: Bocca, JB, Jarke, M and Zaniolo, C (eds.), VLDB’94, Proceedings of 20th International Conference on Very Large Data Bases, 487–499,
September 12–15, 1994 , Santiago de Chile, Chile,Morgan Kaufmann . - 2Amazon reviews dataset. 2014.
http://jmcauley.ucsd.edu/data/amazon/ Accessed: 2017-06-03. - 3Bochkarev, VV, Shevlyakova, AV and Solovyev, VD. 2012. Average word length dynamics as indicator of cultural changes in society. arXiv preprint, arXiv:1208.6109.
- 4Calgary. Calgary compression corpus datasets.
corpus.canterbury.ac.nz/descriptions/ . - 5David, S. 2004.
Data Compression: The Complete Reference . Second edn. - 6Han, J, Cheng, H, Xin, D and Yan, X. 2007. Frequent pattern mining: current status and future directions. Data Mining and Knowledge Discovery, 15(1): 55–86. DOI: 10.1007/s10618-006-0059-1
- 7Huffman, DA. 1952. A method for the construction of minimum redundancy codes. proc. IRE, 40(9): 1098–1101. DOI: 10.1109/JRPROC.1952.273898
- 8Kadimisetty, A, Oswald, C, Sivaselvan, B and Alekhya, K. 2016. Lossy image compressiona frequent sequence mining perspective employing efficient clustering. In: India Conference (INDICON), 2016 IEEE Annual, IEEE, 1–6.
- 9Kaufman, L and Rousseeuw, PJ. 2008. In:
Partitioning Around Medoids (Program PAM) . John Wiley & Sons, Inc., 68–125. - 10Köppl, D and Sadakane, K. 2016. Lempel-ziv computation in compressed space (lz-cics). In: Data Compression Conference (DCC), 2016, IEEE, 3–12. DOI: 10.1109/DCC.2016.38
- 11Oswald, C, Akshay Vyas, V, Arun Kumar, K, Vijay Sri, L and Sivaselvan, B. 2016.
Hierarchical clustering approach to text compression . In: Advanced Computing, Networking, and Informatics, XX–YY. Springer. - 12Oswald, C, Ghosh, AI and Sivaselvan, B. 2015a. Knowledge engineering perspective of text compression. In: 2015 Annual IEEE India Conference (INDICON), IEEE, 1–6. DOI: 10.1109/INDICON.2015.7443683
- 13Oswald, C, Ghosh, AI and Sivaselvan, B. 2015b.
An efficient text compression algorithm-data mining perspective . In: Mining Intelligence and Knowledge Exploration, 563–575. Springer. DOI: 10.1007/978-3-319-26832-3_53 - 14Oswald, C, Kumar, IA, Avinash, J and Sivaselvan, B. 2017. A graph-based frequent sequence mining approach to text compression. In: International Conference on Mining Intelligence and Knowledge Exploration, 371–380.
Springer . - 15Oswald, C and Sivaselvan, B. 2017. An optimal text compression algorithm based on frequent pattern mining. Journal of Ambient Intelligence and Humanized Computing, Jul 2017. DOI: 10.1007/s12652-017-0540-2
- 16Pratas, D, Pinho, AJ and Ferreira, PJ. 2016. Efficient compression of genomic sequences. In: Data Compression Conference (DCC), 2016, IEEE, 231–240. DOI: 10.1109/DCC.2016.60
- 17Ramakrishnan, N and Grama, A. 1999. Data mining: From serendipity to science – guest editors’ introduction. IEEE Computer, 32(8): 34–37. DOI: 10.1109/2.781632
- 18Sipi image data. 1977.
http://sipi.usc.edu/database/ Accessed: 2016-01-03. - 19The global language monitor. 2015.
http://www.languagemonitor.com/number-of-words/number-of-words-in-the-english-language-1008879/ Accessed: 2016-01-15. - 20Wallace, GK. 1991. The jpeg still picture compression standard. Commun. ACM, 34(4): 30–44. April 1991. DOI: 10.1145/103085.103089
- 21Yan, X, Han, J and Afshar, R. 2003. Clospan: Mining closed sequential patterns in large datasets. In: In SDM, SIAM, 166–177. DOI: 10.1137/1.9781611972733.15
- 22Ziv, J and Lempel, A. 1978. Compression of individual sequences via variable-rate coding. Information Theory, IEEE Transactions on, 24(5): 530–536. DOI: 10.1109/TIT.1978.1055934
