References
- Bayraktarov, E, Ehmke, G, O’Connor, J, Burns, EL, Nguyen, HA, McRae, L, Possingham, HP and Lindenmayer, DB. 2019. Do big unstructured biodiversity data mean more knowledge?. Frontiers in Ecology and Evolution, 6: 239. DOI: 10.3389/fevo.2018.00239
- Bird, TJ, Bates, AE, Lefcheck, JS, Hill, NA, Thomson, RJ, Edgar, GJ, Stuart-Smith, RD, Wotherspoon, S, Krkosek, M, Stuart-Smith, JF, Pecl, GT, Barrett, N and Frusher, S. 2014. Statistical solutions for error and bias in global citizen science datasets. Biological Conservation, DOI: 10.1016/j.biocon.2013.07.037
- Butler, BJ and Wear, DN. 2013.
Forest ownership dynamics of southern forests . In: Wear, DN, Greis, JG, (eds.) 2013. The Southern Forest Futures Project: technical report. Gen. Tech. Rep. SRS-GTR-178. Asheville, NC: USDA-Forest Service, Southern Research Station, 178: 103–121. - Callaghan, CT, Roberts, JD, Poore, AGB, Alford, RA, Cogger, H and Rowley, JJL. 2020. Citizen science data accurately predicts expert-derived species richness at a continental scale when sampling thresholds are met. Biodiversity and Conservation, 29(4): 1323–1337. DOI: 10.1007/s10531-020-01937-3
- Callaghan, CT, Rowley, JJL, Cornwell, WK, Poore, AGB and Major, RE. 2019. Improving big citizen science data: Moving beyond haphazard sampling. PLOS Biology, 17(6): e3000357. DOI: 10.1371/journal.pbio.3000357
- Crall, AW, Newman, GJ, Stohlgren, TJ, Holfelder, KA, Graham, J and Waller, DM. 2011. Assessing citizen science data quality: An invasive species case study. Conservation Letters, 4(6): 433–442. DOI: 10.1111/j.1755-263X.2011.00196.x
- Danielsen, F, Pirhofer-Walzl, K, Adrian, TP, Kapijimpanga, DR, Burgess, ND, Jensen, PM, Bonney, R, Funder, M, Landa, A, Levermann, N and Madsen, J. 2014. Linking Public Participation in Scientific Research to the Indicators and Needs of International Environmental Agreements. Conservation Letters, 7(1): 12–24. DOI: 10.1111/conl.12024
- Dee, DP, Uppala, SM, Simmons, AJ, Berrisford, P, Poli, P, Kobayashi, S, Andrae, U, Balmaseda, MA, Balsamo, G, Bauer, P, Bechtold, P, Beljaars, ACM, van de Berg, L, Bidlot, J, Bormann, N, Delsol, C, Dragani, R, Fuentes, M, Geer, AJ, Haimberger, L, Healy, SB, Hersbach, H, Hólm, E V, Isaksen, L, Kållberg, P, Köhler, M, Matricardi, M, Mcnally, AP, Monge-Sanz, BM, Morcrette, JJ, Park, BK, Peubey, C, de Rosnay, P, Tavolato, C, Thépaut, JN and Vitart, F. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, DOI: 10.1002/qj.828
- Dickinson, JL, Zuckerberg, B and Bonter, DN. 2010. Citizen Science as an Ecological Research Tool: Challenges and Benefits. Annual Review of Ecology, Evolution, and Systematics, 41: 149–172. DOI: 10.1146/annurev-ecolsys-102209-144636
- Diggle, PJ, Menezes, R and Su, T. 2010. Geostatistical analysis under preferential sampling. Journal of the Royal Statistical Society: Series C (Applied Statistics),. DOI: 10.1111/j.1467-9876.2009.00701.x
- Hammer, RB, Stewart, SI, Winkler, R, Radeloff, VC and Voss, PR. 2004. Characterizing spatial and temporal residential density patterns across the U.S. Midwest, 1940–1990. Landscape and Urban Planning, 69: 183–199. DOI: 10.1016/j.landurbplan.2003.08.011
- Hansen, MC, Potapov, P V, Moore, R, Hancher, M, Turubanova, SA, Tyukavina, A, Thau, D, Stehman, SV, Goetz, SJ, Loveland, TR, Kommareddy, A, Egorov, A, Chini, L, Justice, CO and Townshend, JRG. 2013. High-resolution global maps of 21st-century forest cover change. Science, 342: 850–853. DOI: 10.1126/science.1244693
- Homer, C, Dewitz, J, Yang, L, Jin, S, Danielson, P, Xian, G, Coulston, J, Herold, N, Wickham, J and Megown, K. 2015. Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogrammetric Engineering & Remote Sensing, 81(5): 345–354.
- Hunter, J, Alabri, A and Van Ingen, C. 2013.
Assessing the quality and trustworthiness of citizen science data . In: Concurrency Computation Practice and Experience. 2013 John Wiley & Sons, Ltd. 454–466. DOI: 10.1002/cpe.2923 - Isaac, NJB, van Strien, AJ, August, TA, de Zeeuw, MP and Roy, DB. 2014. Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods in Ecology and Evolution. DOI: 10.1111/2041-210X.12254
- Johnston, A, Moran, N, Musgrove, A, Fink, D and Baillie, SR. 2020. Estimating species distributions from spatially biased citizen science data. Ecological Modelling, 422:
108927 . DOI: 10.1016/j.ecolmodel.2019.108927 - Kays, R, Arbogast, BS, Baker-Whatton, M, Beirne, C, Boone, HM, Bowler, M, Burneo, SF, Cove, M V, Ding, P, Espinosa, S, Luis Sousa Gonçalves, A, Hansen, CP, Jansen, PA, Kolowski, JM, Knowles, TW, Guimarães Moreira Lima, M, Millspaugh, J, McShea, WJ, Pacifici, K, Parsons, AW, Pease, BS, Rovero, F, Santos, F, Schuttler, SG, Sheil, D, Si, X, Snider, M and Spironello, WR. 2020. An empirical evaluation of camera trap study design: how many, how long, and when? Methods in Ecology and Evolution, 11: 700–713. DOI: 10.1111/2041-210X.13370
- Kosmala, M, Wiggins, A, Swanson, A and Simmons, B. 2016. Assessing data quality in citizen science. Frontiers in Ecology and the Environment, 14(10): 551–560. DOI: 10.1002/fee.1436
- Lasky, M, Parsons, A, Schuttler, S, Mash, A, Larson, L, Norton, B, Pease, B, Boone, H, Gatens, L and Kays, R. 2021a. Candid Critters : Challenges and Solutions in a Large-Scale Citizen Science Camera Trap Project. Citizen Science: Theory and Practice, 6(1): 1–17. DOI: 10.5334/cstp.343
- Lasky, M, Parsons, AW, Schuttler, SG, Hess, G, Sutherland, R, Kalies, L, Clark, S, Olfenbuttel, C, Matthews, J, Davis, G, McShea, WJ, Shaw, J, Dukes, C, Hill, J and Kays, R. 2021b. CAROLINA CRITTERS: a collection of camera trap data from wildlife surveys across North Carolina. Ecology.
e03372 . DOI: 10.1002/ecy.3372 - MacKenzie, DI, Nichols, JD, Lachman, GB, Droege, S, Royle, JA and Langtimm, CA. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology, 83: 2248–2255. DOI: 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
- Meehan, TD, Michel, NL and Rue, H. 2019. Spatial modeling of Audubon Christmas Bird Counts reveals fine-scale patterns and drivers of relative abundance trends. Ecosphere. DOI: 10.1002/ecs2.2707
- Mesinger, F, DiMego, G, Kalnay, E, Mitchell, K, Shafran, PC, Ebisuzaki, W, Jović, D, Woollen, J, Rogers, E, Berbery, EH, Ek, MB, Fan, Y, Grumbine, R, Higgins, W, Li, H, Lin, Y, Manikin, G, Parrish, D and Shi, W. 2006. North American regional reanalysis. Bulletin of the American Meteorological Society. DOI: 10.1175/BAMS-87-3-343
- Millar, EE, Hazell, EC and Melles, SJ. 2019. The ‘cottage effect’ in citizen science? Spatial bias in aquatic monitoring programs. International Journal of Geographical Information Science, 33(8): 1612–1632. DOI: 10.1080/13658816.2018.1423686
- Petrovan, SO, Vale, CG and Sillero, N. 2020. Using citizen science in road surveys for large-scale amphibian monitoring: are biased data representative for species distribution? Biodiversity and Conservation, 1–15. DOI: 10.1007/s10531-020-01956-0
- Weiser, EL, Diffendorfer, JE, Lopez-Hoffman, L, Semmens, D and Thogmartin, WE. 2020. Challenges for leveraging citizen science to support statistically robust monitoring programs. Biological Conservation, 242. DOI: 10.1016/j.biocon.2020.108411
