References
- 1Angst, J., Gamma, A., Benazzi, F., Ajdacic, V., Eich, D., & Rössler, W. (2003). Toward a re-definition of subthreshold bipolarity: epidemiology and proposed criteria for bipolar-II, minor bipolar disorders and hypomania. Journal of affective disorders, 73(1–2), 133–146. DOI: 10.1016/S0165-0327(02)00322-1
- 2Asparouhov, T., Hamaker, E. L., & Muthén, B. (2018). Dynamic structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 25(3), 359–388. DOI: 10.1080/10705511.2017.1406803
- 3Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference. University of London, University College London (United Kingdom).
- 4Beltz, A. M., & Gates, K. M. (2017). Network mapping with GIMME. Multivariate behavioral research, 52(6), 789–804. DOI: 10.1080/00273171.2017.1373014
- 5Brodersen, K. H., Deserno, L., Schlagenhauf, F., Lin, Z., Penny, W. D., Buhmann, J. M., & Stephan, K. E. (2014). Dissecting psychiatric spectrum disorders by generative embedding. Neuroimage Clin, 4, 98–111. DOI: 10.1016/j.nicl.2013.11.002
- 6Bromet, E. J., Schwartz, J. E., Fennig, S., Geller, L., Jandorf, L., Kovasznay, B., Lavelle, J., Miller, A., Pato, C., Ram, R., & Rich, C. (1992). The Epidemiology of Psychosis: The Suffolk County Mental Health Project. Schizophrenia bulletin, 18(2), 243–255. DOI: 10.1093/schbul/18.2.243
- 7Chumbley, J. R., Friston, K. J., Fearn, T., & Kiebel, S. J. (2007). A Metropolis–Hastings algorithm for dynamic causal models. Neuroimage, 38(3), 478–487. DOI: 10.1016/j.neuroimage.2007.07.028
- 8Ciompi, L. (1980). Catamnestic long-term study on the course of life and aging of schizophrenics. Schizophrenia bulletin, 6(4), 606–618. DOI: 10.1093/schbul/6.4.606
- 9Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: the seven pillars of RDoC. BMC medicine, 11(1), 1–8. DOI: 10.1186/1741-7015-11-126
- 10Daunizeau, J., David, O., & Stephan, K. E. (2011). Dynamic causal modelling: a critical review of the biophysical and statistical foundations. Neuroimage, 58(2), 312–322. DOI: 10.1016/j.neuroimage.2009.11.062
- 11Duncan, T. E., Duncan, S. C., & Strycker, L. A. (2011). An introduction to latent variable growth curve modeling: concepts, issues, and applications (Second edition). Psychology Press. DOI: 10.4324/9780203879962
- 12Epskamp, S., Waldorp, L. J., Mottus, R., & Borsboom, D. (2018). The Gaussian Graphical Model in Cross-Sectional and Time-Series Data. Multivariate Behav Res, 53(4), 453–480. DOI: 10.1080/00273171.2018.1454823
- 13Feynman, R. P. (2018). Statistical mechanics: a set of lectures. CRC press. DOI: 10.1201/9780429493034
- 14First, M. B., Rebello, T. J., Keeley, J. W., Bhargava, R., Dai, Y., Kulygina, M., Matsumoto, C., Robles, R., Stona, A. C., & Reed, G. M. (2018). Do mental health professionals use diagnostic classifications the way we think they do? A global survey. World Psychiatry, 17(2), 187–195.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5980454/pdf/WPS-17-187.pdf . DOI: 10.1002/wps.20525 - 15Fisher, A. J., Reeves, J. W., Lawyer, G., Medaglia, J. D., & Rubel, J. A. (2017). Exploring the Idiographic Dynamics of Mood and Anxiety via Network Analysis. Journal of abnormal psychology (1965), 126(8), 1044–1056. DOI: 10.1037/abn0000311
- 16Frässle, S., Harrison, S. J., Heinzle, J., Clementz, B. A., Tamminga, C. A., Sweeney, J. A., Gershon, E. S., Keshavan, M. S., Pearlson, G. D., & Powers, A. (2021). Regression dynamic causal modeling for resting-state fMRI. Human brain mapping, 42(7), 2159–2180. DOI: 10.1002/hbm.25357
- 17Friston, K., Costello, A., & Pillay, D. (2020). ‘Dark matter’, second waves and epidemiological modelling. BMJ Glob Health, 5(12),
e003978 . DOI: 10.1136/bmjgh-2020-003978 - 18Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., & Penny, W. (2007). Variational free energy and the Laplace approximation. Neuroimage, 34(1), 220–234. DOI: 10.1016/j.neuroimage.2006.08.035
- 19Friston, K., Zeidman, P., & Litvak, V. (2015). Empirical Bayes for DCM: A Group Inversion Scheme. Front Syst Neurosci, 9,
164 . DOI: 10.3389/fnsys.2015.00164 - 20Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. Neuroimage, 19(4), 1273–1302. DOI: 10.1016/S1053-8119(03)00202-7
- 21Friston, K. J., Parr, T., Zeidman, P., Razi, A., Flandin, G., Daunizeau, J., Hulme, O. J., Billig, A. J., Litvak, V., Moran, R. J., Price, C. J., & Lambert, C. (2020). Dynamic causal modelling of COVID-19. Wellcome Open Research, 5(89),
89 . DOI: 10.12688/wellcomeopenres.15881.1 - 22Friston, K. J., Redish, A. D., & Gordon, J. A. (2017). Computational Nosology and Precision Psychiatry. Computational psychiatry, 1, 2–23. DOI: 10.1162/cpsy_a_00001
- 23Gandolfi, D., Pagnoni, G., Filippini, T., Goffi, A., Vinceti, M., D’Angelo, E., & Mapelli, J. (2021). Modeling Early Phases of COVID-19 Pandemic in Northern Italy and Its Implication for Outbreak Diffusion [Original Research]. Frontiers in Public Health, 9(1946). DOI: 10.3389/fpubh.2021.724362
- 24Gelman, A., Vehtari, A., Simpson, D., Margossian, C. C., Carpenter, B., Yao, Y., Kennedy, L., Gabry, J., Bürkner, P.-C., & Modrák, M. (2020). Bayesian workflow. arXiv preprint arXiv:2011.01808.
- 25Gordon, J. A., & Redish, A. D. (2016).
On the cusp. Current challenges and promises in psychiatry . In A. D., Redish & J. A. Gordon (Eds.), Computational psychiatry: New perspectives on mental illness (pp. 3–14). Cambridge, MA: MIT Press. DOI: 10.7551/mitpress/9780262035422.003.0001 - 26Hyman, S. E. (2010). The diagnosis of mental disorders: the problem of reification. Annual review of clinical psychology, 6, 155–179. DOI: 10.1146/annurev.clinpsy.3.022806.091532
- 27Kotov, R., Fochtmann, L., Li, K., Tanenberg-Karant, M., Constantino, E. A., Rubinstein, J., Perlman, G., Velthorst, E., Fett, A.-K. J., & Carlson, G. (2017). Declining clinical course of psychotic disorders over the two decades following first hospitalization: evidence from the Suffolk County Mental Health Project. American Journal of Psychiatry, 174(11), 1064–1074. DOI: 10.1176/appi.ajp.2017.16101191
- 28Kotov, R., Jonas, K. G., Lian, W., Docherty, A. R., & Carpenter, W. T. (2022). Reconceptualizing schizophrenia in the Hierarchical Taxonomy Of Psychopathology (HiTOP). Schizophr Res, 242, 73–77. DOI: 10.1016/j.schres.2022.01.053
- 29Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R. M., Brown, T. A., Carpenter, W. T., Caspi, A., & Clark, L. A. (2017). The Hierarchical Taxonomy of Psychopathology (HiTOP): a dimensional alternative to traditional nosologies. Journal of abnormal psychology, 126(4),
454 . DOI: 10.1037/abn0000258 - 30Kotov, R., Leong, S. H., Mojtabai, R., Erlanger, A. C. E., Fochtmann, L. J., Constantino, E., Carlson, G. A., & Bromet, E. J. (2013). Boundaries of Schizoaffective Disorder: Revisiting Kraepelin. JAMA psychiatry (Chicago, Ill.), 70(12), 1276–1286. DOI: 10.1001/jamapsychiatry.2013.2350
- 31Krueger, R. F., Kotov, R., Watson, D., Forbes, M. K., Eaton, N. R., Ruggero, C. J., Simms, L. J., Widiger, T. A., Achenbach, T. M., & Bach, B. (2018). Progress in achieving quantitative classification of psychopathology. World Psychiatry, 17(3), 282–293. DOI: 10.1002/wps.20566
- 32Krystal, J. H., Murray, J. D., Chekroud, A. M., Corlett, P. R., Yang, G., Wang, X.-J., & Anticevic, A. (2017). Computational psychiatry and the challenge of schizophrenia. Schizophrenia bulletin, 43(3), 473–475. DOI: 10.1093/schbul/sbx025
- 33Lane, S. T., Gates, K. M., Pike, H. K., Beltz, A. M., & Wright, A. G. C. (2019). Uncovering General, Shared, and Unique Temporal Patterns in Ambulatory Assessment Data. Psychological methods, 24(1), 54–69. DOI: 10.1037/met0000192
- 34Litvak, Y., Biess, A., & Bar-Hillel, A. (2019). Learning pose estimation for high-precision robotic assembly using simulated depth images. 2019 International Conference on Robotics and Automation (ICRA). DOI: 10.1109/ICRA.2019.8794226
- 35Litvak, V., Garrido, M., Zeidman, P., & Friston, K. (2015). Empirical Bayes for Group (DCM) Studies: A Reproducibility Study. Front Hum Neurosci, 9,
670 . DOI: 10.3389/fnhum.2015.00670 - 36Nagin, D. S., & Odgers, C. L. (2010). Group-based trajectory modeling in clinical research. Annual review of clinical psychology, 6(1), 109–138. DOI: 10.1146/annurev.clinpsy.121208.131413
- 37Nelson, B., McGorry, P. D., Wichers, M., Wigman, J. T. W., & Hartmann, J. A. (2017). Moving From Static to Dynamic Models of the Onset of Mental Disorder: A Review. JAMA psychiatry, 74(5), 528–534. DOI: 10.1001/jamapsychiatry.2017.0001
- 38Papadopoulou, M., Cooray, G., Rosch, R., Moran, R., Marinazzo, D., & Friston, K. (2017). Dynamic causal modelling of seizure activity in a rat model. Neuroimage, 146, 518–532. DOI: 10.1016/j.neuroimage.2016.08.062
- 39Penny, W., & Sengupta, B. (2016). Annealed importance sampling for neural mass models. PLOS Computational Biology, 12(3),
e1004797 . DOI: 10.1371/journal.pcbi.1004797 - 40Penny, W. D. (2012). Comparing dynamic causal models using AIC, BIC and free energy. Neuroimage, 59(1), 319–330. DOI: 10.1016/j.neuroimage.2011.07.039
- 41Pereira, I., Frassle, S., Heinzle, J., Schobi, D., Do, C. T., Gruber, M., & Stephan, K. E. (2021). Conductance-based dynamic causal modeling: A mathematical review of its application to cross-power spectral densities. Neuroimage, 245,
118662 . DOI: 10.1016/j.neuroimage.2021.118662 - 42Rosch, R. E., Hunter, P. R., Baldeweg, T., Friston, K. J., & Meyer, M. P. (2018). Calcium imaging and dynamic causal modelling reveal brain-wide changes in effective connectivity and synaptic dynamics during epileptic seizures. PLoS Comput Biol, 14(8),
e1006375 . DOI: 10.1371/journal.pcbi.1006375 - 43Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. The Annals of Statistics, 1151–1172. DOI: 10.1214/aos/1176346785
- 44Sengupta, B., Friston, K. J., & Penny, W. D. (2016). Gradient-based MCMC samplers for dynamic causal modelling. Neuroimage, 125, 1107–1118. DOI: 10.1016/j.neuroimage.2015.07.043
- 45Shil’Nikov, A., Shil’Nikov, L., & Turaev, D. (1993). Normal forms and Lorenz attractors. International Journal of Bifurcation and Chaos, 3(05), 1123–1139. DOI: 10.1142/S0218127493000933
- 46Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the royal statistical society: Series b (statistical methodology), 64(4), 583–639. DOI: 10.1111/1467-9868.00353
- 47Talts, S., Betancourt, M., Simpson, D., Vehtari, A., & Gelman, A. (2018). Validating Bayesian inference algorithms with simulation-based calibration. arXiv preprint arXiv:1804.06788.
- 48Taylor, D. (2016). Prescribing according to diagnosis: how psychiatry is different. World Psychiatry, 15(3),
224 . DOI: 10.1002/wps.20343 - 49Wang, X.-J., & Krystal, J. H. (2014). Computational Psychiatry. Neuron (Cambridge, Mass.), 84(3), 638–654. DOI: 10.1016/j.neuron.2014.10.018
- 50Waszczuk, M. A., Zimmerman, M., Ruggero, C., Li, K., MacNamara, A., Weinberg, A., Hajcak, G., Watson, D., & Kotov, R. (2017). What do clinicians treat: Diagnoses or symptoms? The incremental validity of a symptom-based, dimensional characterization of emotional disorders in predicting medication prescription patterns. Comprehensive Psychiatry, 79, 80–88. DOI: 10.1016/j.comppsych.2017.04.004
- 51Wright, A. G., & Woods, W. C. (2020). Personalized models of psychopathology. Annual review of clinical psychology, 16, 49–74. DOI: 10.1146/annurev-clinpsy-102419-125032
- 52Zeidman, P., Friston, K., & Parr, T. (2022). A primer on Variational Laplace. DOI: 10.31219/osf.io/28vwh
- 53Zeidman, P., Jafarian, A., Corbin, N., Seghier, M. L., Razi, A., Price, C. J., & Friston, K. J. (2019). A guide to group effective connectivity analysis, part 1: first level analysis with DCM for fMRI. Neuroimage, 200, 174–190. DOI: 10.1016/j.neuroimage.2019.06.031
- 54Zeidman, P., Jafarian, A., Seghier, M. L., Litvak, V., Cagnan, H., Price, C. J., & Friston, K. J. (2019). A guide to group effective connectivity analysis, part 2: Second level analysis with PEB. Neuroimage, 200, 12–25. DOI: 10.1016/j.neuroimage.2019.06.032
