Have a personal or library account? Click to login
Reliability of Decision-Making and Reinforcement Learning Computational Parameters Cover

Reliability of Decision-Making and Reinforcement Learning Computational Parameters

Open Access
|Feb 2023

Abstract

Computational models can offer mechanistic insight into cognition and therefore have the potential to transform our understanding of psychiatric disorders and their treatment. For translational efforts to be successful, it is imperative that computational measures capture individual characteristics reliably. To date, this issue has received little consideration. Here we examine the reliability of reinforcement learning and economic models derived from two commonly used tasks. Healthy individuals (N=50) completed a restless four-armed bandit and a calibrated gambling task twice, two weeks apart. Reward and punishment processing parameters from the reinforcement learning model showed fair-to-good reliability, while risk/loss aversion parameters from a prospect theory model exhibited good-to-excellent reliability. Both models were further able to predict future behaviour above chance within individuals. This prediction was better when based on participants’ own model parameters than other participants’ parameter estimates. These results suggest that reinforcement learning, and particularly prospect theory parameters, can be measured reliably to assess learning and decision-making mechanisms, and that these processes may represent relatively distinct computational profiles across individuals. Overall, these findings indicate the translational potential of clinically-relevant computational parameters for precision psychiatry.
DOI: https://doi.org/10.5334/cpsy.86 | Journal eISSN: 2379-6227
Language: English
Submitted on: Nov 15, 2021
Accepted on: Jan 23, 2023
Published on: Feb 8, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Anahit Mkrtchian, Vincent Valton, Jonathan P. Roiser, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.