Have a personal or library account? Click to login
Reliability of Decision-Making and Reinforcement Learning Computational Parameters Cover

Reliability of Decision-Making and Reinforcement Learning Computational Parameters

Open Access
|Feb 2023

References

  1. 1Ahn, W. Y., & Busemeyer, J. R. (2016). Challenges and promises for translating computational tools into clinical practice. Curr Opin Behav Sci, 11, 17. DOI: 10.1016/j.cobeha.2016.02.001
  2. 2Ahn, W. Y., Haines, N., & Zhang, L. (2017). Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package. Comput Psychiatr, 1, 2457. DOI: 10.1162/CPSY_a_00002
  3. 3Aylward, J., Valton, V., Ahn, W. Y., Bond, R. L., Dayan, P., Roiser, J. P., & Robinson, O. J. (2019). Altered learning under uncertainty in unmedicated mood and anxiety disorders. Nat Hum Behav, 3, 11161123. DOI: 10.1038/s41562-019-0628-0
  4. 4Baek, K., Kwon, J., Chae, J. H., Chung, Y. A., Kralik, J. D., Min, J. A., Huh, H., Choi, K. M., Jang, K. I., Lee, N. B., Kim, S., Peterson, B. S., & Jeong, J. (2017). Heightened aversion to risk and loss in depressed patients with a suicide attempt history. Sci Rep, 7(1), 11228. DOI: 10.1038/s41598-017-10541-5
  5. 5Bland, A. R., Roiser, J. P., Mehta, M. A., Schei, T., Boland, H., Campbell-Meiklejohn, D. K., Emsley, R. A., Munafo, M. R., Penton-Voak, I. S., Seara-Cardoso, A., Viding, E., Voon, V., Sahakian, B. J., Robbins, T. W., & Elliott, R. (2016). EMOTICOM: A Neuropsychological Test Battery to Evaluate Emotion, Motivation, Impulsivity, and Social Cognition. Front Behav Neurosci, 10, 25. DOI: 10.3389/fnbeh.2016.00025
  6. 6Brown, J. K., Waltz, J. A., Strauss, G. P., McMahon, R. P., Frank, M. J., & Gold, J. M. (2013). Hypothetical decision making in schizophrenia: the role of expected value computation and “irrational” biases. Psychiatry Res, 209(2), 142149. DOI: 10.1016/j.psychres.2013.02.034
  7. 7Brown, V. M., Chen, J., Gillan, C. M., & Price, R. B. (2020). Improving the Reliability of Computational Analyses: Model-Based Planning and Its Relationship With Compulsivity. Biol Psychiatry Cogn Neurosci Neuroimaging, 5(6), 601609. DOI: 10.1016/j.bpsc.2019.12.019
  8. 8Browning, M., Carter, C. S., Chatham, C., Den Ouden, H., Gillan, C. M., Baker, J. T., Chekroud, A. M., Cools, R., Dayan, P., Gold, J., Goldstein, R. Z., Hartley, C. A., Kepecs, A., Lawson, R. P., Mourao-Miranda, J., Phillips, M. L., Pizzagalli, D. A., Powers, A., Rindskopf, D., … Paulus, M. (2020). Realizing the Clinical Potential of Computational Psychiatry: Report From the Banbury Center Meeting, February 2019. Biol Psychiatry, 88(2), e5e10. DOI: 10.1016/j.biopsych.2019.12.026
  9. 9Busemeyer, J. R., & Wang, Y. M. (2000). Model Comparisons and Model Selections Based on Generalization Criterion Methodology. J Math Psychol, 44(1), 171189. DOI: 10.1006/jmps.1999.1282
  10. 10Charpentier, C. J., Aylward, J., Roiser, J. P., & Robinson, O. J. (2017). Enhanced Risk Aversion, But Not Loss Aversion, in Unmedicated Pathological Anxiety. Biol Psychiatry, 81(12), 10141022. DOI: 10.1016/j.biopsych.2016.12.010
  11. 11Charpentier, C. J., De Martino, B., Sim, A. L., Sharot, T., & Roiser, J. P. (2016). Emotion-induced loss aversion and striatal-amygdala coupling in low-anxious individuals. Soc Cogn Affect Neurosci, 11(4), 569579. DOI: 10.1093/scan/nsv139
  12. 12Chung, D., Kadlec, K., Aimone, J. A., McCurry, K., King-Casas, B., & Chiu, P. H. (2017). Valuation in major depression is intact and stable in a non-learning environment. Sci Rep, 7, 44374. DOI: 10.1038/srep44374
  13. 13Daw, N. D. (2011). Trial-by-trial data analysis using computational models. In Decision Making, Affect, and Learning: Attention and Performance XXIII. Oxford University Press. DOI: 10.1093/acprof:oso/9780199600434.003.0001
  14. 14Daw, N. D., & Doya, K. (2006). The computational neurobiology of learning and reward. Curr Opin Neurobiol, 16(2), 199204. DOI: 10.1016/j.conb.2006.03.006
  15. 15Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876879. DOI: 10.1038/nature04766
  16. 16Dayan, P., & Niv, Y. (2008). Reinforcement learning: the good, the bad and the ugly. Curr Opin Neurobiol, 18(2), 185196. DOI: 10.1016/j.conb.2008.08.003
  17. 17Eckstein, M. K., Master, S. L., Xia, L., Dahl, R. E., Wilbrecht, L., & Collins, A. G. E. (2022). The Interpretation of Computational Model Parameters Depends on the Context. Preprint at bioRxiv. DOI: 10.1101/2021.05.28.446162
  18. 18Elliott, M. L., Knodt, A. R., Ireland, D., Morris, M. L., Poulton, R., Ramrakha, S., Sison, M. L., Moffitt, T. E., Caspi, A., & Hariri, A. R. (2020). What Is the Test-Retest Reliability of Common Task-Functional MRI Measures? New Empirical Evidence and a Meta-Analysis. Psychol Sci, 31(7), 792806. DOI: 10.1177/0956797620916786
  19. 19Enkavi, A. Z., Eisenberg, I. W., Bissett, P. G., Mazza, G. L., MacKinnon, D. P., Marsch, L. A., & Poldrack, R. A. (2019). Large-scale analysis of test-retest reliabilities of self-regulation measures. Proc Natl Acad Sci U S A, 116(12), 54725477. DOI: 10.1073/pnas.1818430116
  20. 20Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods, 39(2), 175191. DOI: 10.3758/BF03193146
  21. 21Fleiss, J. L. (2011). Reliability of Measurement. In The Design and Analysis of Clinical Experiments (pp. 132). DOI: 10.1002/9781118032923.ch1
  22. 22Glockner, A., & Pachur, T. (2012). Cognitive models of risky choice: parameter stability and predictive accuracy of prospect theory. Cognition, 123(1), 2132. DOI: 10.1016/j.cognition.2011.12.002
  23. 23Hadlaczky, G., Hokby, S., Mkrtchian, A., Wasserman, D., Balazs, J., Machin, N., Sarchiapone, M., Sisask, M., & Carli, V. (2018). Decision-Making in Suicidal Behavior: The Protective Role of Loss Aversion. Front Psychiatry, 9, 116. DOI: 10.3389/fpsyt.2018.00116
  24. 24Haines, N., Kvam, P., Irving, L., Smith, C., Beauchaine, T. P., Pitt, M. A., Ahn, W.-Y., & Turner, B. (2020). Learning from the Reliability Paradox: How Theoretically Informed Generative Models Can Advance the Social, Behavioral, and Brain Sciences. PsyArXiv. DOI: 10.31234/osf.io/xr7y3
  25. 25Hartley, C. A., & Phelps, E. A. (2012). Anxiety and decision-making. Biol Psychiatry, 72(2), 113118. DOI: 10.1016/j.biopsych.2011.12.027
  26. 26Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behav Res Methods, 50(3), 11661186. DOI: 10.3758/s13428-017-0935-1
  27. 27Huys, Q. J. M., Browning, M., Paulus, M. P., & Frank, M. J. (2021). Advances in the computational understanding of mental illness. Neuropsychopharmacology, 46(1), 319. DOI: 10.1038/s41386-020-0746-4
  28. 28Huys, Q. J. M., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci, 19(3), 404413. DOI: 10.1038/nn.4238
  29. 29Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263291. DOI: 10.2307/1914185
  30. 30Klaus, F., Chumbley, J. R., Seifritz, E., Kaiser, S., & Hartmann-Riemer, M. (2020). Loss Aversion and Risk Aversion in Non-Clinical Negative Symptoms and Hypomania. Front Psychiatry, 11, 574131. DOI: 10.3389/fpsyt.2020.574131
  31. 31Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med, 15(2), 155163. DOI: 10.1016/j.jcm.2016.02.012
  32. 32Kruschke, J. K. (2015). Doing Bayesian Data Analysis: A tutorial with R, JAGS, and Stan (Second ed.). Academic Press. DOI: 10.1016/B978-0-12-405888-0.00008-8
  33. 33Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs [Review]. Frontiers in Psychology, 4(863), 863. DOI: 10.3389/fpsyg.2013.00863
  34. 34Maia, T. V. (2009). Reinforcement learning, conditioning, and the brain: Successes and challenges. Cogn Affect Behav Neurosci, 9(4), 343364. DOI: 10.3758/CABN.9.4.343
  35. 35Maia, T. V., & Frank, M. J. (2011). From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci, 14(2), 154162. DOI: 10.1038/nn.2723
  36. 36McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(1), 3046. DOI: 10.1037/1082-989X.1.1.30
  37. 37Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends Cogn Sci, 16(1), 7280. DOI: 10.1016/j.tics.2011.11.018
  38. 38Montague, P. R., Hyman, S. E., & Cohen, J. D. (2004). Computational roles for dopamine in behavioural control. Nature, 431(7010), 760767. DOI: 10.1038/nature03015
  39. 39Moutoussis, M., Bullmore, E. T., Goodyer, I. M., Fonagy, P., Jones, P. B., Dolan, R. J., Dayan, P., & Neuroscience in Psychiatry Network Research, C. (2018). Change, stability, and instability in the Pavlovian guidance of behaviour from adolescence to young adulthood. PLoS Comput Biol, 14(12), e1006679. DOI: 10.1371/journal.pcbi.1006679
  40. 40Nair, A., Rutledge, R. B., & Mason, L. (2020). Under the Hood: Using Computational Psychiatry to Make Psychological Therapies More Mechanism-Focused. Front Psychiatry, 11, 140. DOI: 10.3389/fpsyt.2020.00140
  41. 41Niv, N. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53(3), 139154. DOI: 10.1016/j.jmp.2008.12.005
  42. 42Noble, S., Scheinost, D., & Constable, R. T. (2019). A decade of test-retest reliability of functional connectivity: A systematic review and meta-analysis. Neuroimage, 203, 116157. DOI: 10.1016/j.neuroimage.2019.116157
  43. 43Nord, C. L., Gray, A., Charpentier, C. J., Robinson, O. J., & Roiser, J. P. (2017). Unreliability of putative fMRI biomarkers during emotional face processing. Neuroimage, 156, 119127. DOI: 10.1016/j.neuroimage.2017.05.024
  44. 44Palminteri, S., & Chevallier, C. (2018). Can We Infer Inter-Individual Differences in Risk-Taking From Behavioral Tasks? Front Psychol, 9, 2307. DOI: 10.3389/fpsyg.2018.02307
  45. 45Palminteri, S., Wyart, V., & Koechlin, E. (2017). The Importance of Falsification in Computational Cognitive Modeling. Trends Cogn Sci, 21(6), 425433. DOI: 10.1016/j.tics.2017.03.011
  46. 46Paulus, M. P., Huys, Q. J., & Maia, T. V. (2016). A Roadmap for the Development of Applied Computational Psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging, 1(5), 386392. DOI: 10.1016/j.bpsc.2016.05.001
  47. 47Pike, A. C., Tan, K., Ansari, H. J., Wing, M., & Robinson, O. J. (2022). Test-retest reliability of affective bias tasks. Preprint at PsyArXiv. DOI: 10.31234/osf.io/n2fkh
  48. 48Plichta, M. M., Schwarz, A. J., Grimm, O., Morgen, K., Mier, D., Haddad, L., Gerdes, A. B., Sauer, C., Tost, H., Esslinger, C., Colman, P., Wilson, F., Kirsch, P., & Meyer-Lindenberg, A. (2012). Test-retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery. Neuroimage, 60(3), 17461758. DOI: 10.1016/j.neuroimage.2012.01.129
  49. 49Price, R. B., Brown, V., & Siegle, G. J. (2019). Computational Modeling Applied to the Dot-Probe Task Yields Improved Reliability and Mechanistic Insights. Biol Psychiatry, 85(7), 606612. DOI: 10.1016/j.biopsych.2018.09.022
  50. 50Rodebaugh, T. L., Scullin, R. B., Langer, J. K., Dixon, D. J., Huppert, J. D., Bernstein, A., Zvielli, A., & Lenze, E. J. (2016). Unreliability as a threat to understanding psychopathology: The cautionary tale of attentional bias. J Abnorm Psychol, 125(6), 840851. DOI: 10.1037/abn0000184
  51. 51Ruggeri, K., Ali, S., Berge, M. L., Bertoldo, G., Bjorndal, L. D., Cortijos-Bernabeu, A., Davison, C., Demic, E., Esteban-Serna, C., Friedemann, M., Gibson, S. P., Jarke, H., Karakasheva, R., Khorrami, P. R., Kveder, J., Andersen, T. L., Lofthus, I. S., McGill, L., Nieto, A. E., … Folke, T. (2020). Replicating patterns of prospect theory for decision under risk. Nat Hum Behav, 4(6), 622633. DOI: 10.1038/s41562-020-0886-x
  52. 52Scheibehenne, B., & Pachur, T. (2015). Using Bayesian hierarchical parameter estimation to assess the generalizability of cognitive models of choice. Psychon Bull Rev, 22(2), 391407. DOI: 10.3758/s13423-014-0684-4
  53. 53Schonberg, T., Fox, C. R., & Poldrack, R. A. (2011). Mind the gap: bridging economic and naturalistic risk-taking with cognitive neuroscience. Trends Cogn Sci, 15(1), 1119. DOI: 10.1016/j.tics.2010.10.002
  54. 54Seymour, B., Daw, N. D., Roiser, J. P., Dayan, P., & Dolan, R. (2012). Serotonin selectively modulates reward value in human decision-making. J Neurosci, 32(17), 58335842. DOI: 10.1523/JNEUROSCI.0053-12.2012
  55. 55Shahar, N., Hauser, T. U., Moutoussis, M., Moran, R., Keramati, M., consortium, N., & Dolan, R. J. (2019). Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling. PLoS Comput Biol, 15(2), e1006803. DOI: 10.1371/journal.pcbi.1006803
  56. 56Sip, K. E., Gonzalez, R., Taylor, S. F., & Stern, E. R. (2017). Increased Loss Aversion in Unmedicated Patients with Obsessive-Compulsive Disorder. Front Psychiatry, 8, 309. DOI: 10.3389/fpsyt.2017.00309
  57. 57Sokol-Hessner, P., Hsu, M., Curley, N. G., Delgado, M. R., Camerer, C. F., & Phelps, E. A. (2009). Thinking like a trader selectively reduces individuals’ loss aversion. Proc Natl Acad Sci U S A, 106(13), 50355040. DOI: 10.1073/pnas.0806761106
  58. 58Sokol-Hessner, P., & Rutledge, R. B. (2019). The Psychological and Neural Basis of Loss Aversion. Current Directions in Psychological Science, 28(1), 2027. DOI: 10.1177/0963721418806510
  59. 59Speekenbrink, M., & Konstantinidis, E. (2015). Uncertainty and exploration in a restless bandit problem. Top Cogn Sci, 7(2), 351367. DOI: 10.1111/tops.12145
  60. 60Stauffer, W. R., Lak, A., & Schultz, W. (2014). Dopamine reward prediction error responses reflect marginal utility. Current biology, 24(21), 24912500. DOI: 10.1016/j.cub.2014.08.064
  61. 61Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (Second ed.). MIT Press.
  62. 62Tobler, P. N., Christopoulos, G. I., O’Doherty, J. P., Dolan, R. J., & Schultz, W. (2009). Risk-dependent reward value signal in human prefrontal cortex. PNAS, 106(17), 71857190. DOI: 10.1073/pnas.0809599106
  63. 63Tremeau, F., Brady, M., Saccente, E., Moreno, A., Epstein, H., Citrome, L., Malaspina, D., & Javitt, D. (2008). Loss aversion in schizophrenia. Schizophr Res, 103(1–3), 121128. DOI: 10.1016/j.schres.2008.03.027
  64. 64Tversky, A., & Kahneman, D. (1992). Advances in Prospect Theory: Cumulative Representation of Uncertainty. Journal of Risk and Uncertainty, 5(4), 297323. DOI: 10.1007/BF00122574
  65. 65Valton, V., Wise, T., & Robinson, O. J. (2020). Recommendations for Bayesian hierarchical model specifications for case-control studies in mental health. Machine Learning for Health (ML4H) at NeurIPS 2020, 34th Conference on Neural Information Processing Systems. arXiv:2011.01725 [cs.CY] Ithaca.
  66. 66Waltmann, M., Schlagenhauf, F., & Deserno, L. (2022). Sufficient reliability of the behavioral and computational readouts of a probabilistic reversal learning task. Behavior research methods. DOI: 10.3758/s13428-021-01739-7
  67. 67Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. Elife, 8. DOI: 10.7554/eLife.49547
  68. 68Yi, M. S. K., Steyvers, M., & Lee, M. (2009). Modeling Human Performance in Restless Bandits with Particle Filters. The Journal of Problem Solving, 2(2). DOI: 10.7771/1932-6246.1060
DOI: https://doi.org/10.5334/cpsy.86 | Journal eISSN: 2379-6227
Language: English
Submitted on: Nov 15, 2021
Accepted on: Jan 23, 2023
Published on: Feb 8, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Anahit Mkrtchian, Vincent Valton, Jonathan P. Roiser, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.