References
- 1Ahn, W. Y., & Busemeyer, J. R. (2016). Challenges and promises for translating computational tools into clinical practice. Curr Opin Behav Sci, 11, 1–7. DOI: 10.1016/j.cobeha.2016.02.001
- 2Ahn, W. Y., Haines, N., & Zhang, L. (2017). Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making With the hBayesDM Package. Comput Psychiatr, 1, 24–57. DOI: 10.1162/CPSY_a_00002
- 3Aylward, J., Valton, V., Ahn, W. Y., Bond, R. L., Dayan, P., Roiser, J. P., & Robinson, O. J. (2019). Altered learning under uncertainty in unmedicated mood and anxiety disorders. Nat Hum Behav, 3, 1116–1123. DOI: 10.1038/s41562-019-0628-0
- 4Baek, K., Kwon, J., Chae, J. H., Chung, Y. A., Kralik, J. D., Min, J. A., Huh, H., Choi, K. M., Jang, K. I., Lee, N. B., Kim, S., Peterson, B. S., & Jeong, J. (2017). Heightened aversion to risk and loss in depressed patients with a suicide attempt history. Sci Rep, 7(1), 11228. DOI: 10.1038/s41598-017-10541-5
- 5Bland, A. R., Roiser, J. P., Mehta, M. A., Schei, T., Boland, H., Campbell-Meiklejohn, D. K., Emsley, R. A., Munafo, M. R., Penton-Voak, I. S., Seara-Cardoso, A., Viding, E., Voon, V., Sahakian, B. J., Robbins, T. W., & Elliott, R. (2016). EMOTICOM: A Neuropsychological Test Battery to Evaluate Emotion, Motivation, Impulsivity, and Social Cognition. Front Behav Neurosci, 10, 25. DOI: 10.3389/fnbeh.2016.00025
- 6Brown, J. K., Waltz, J. A., Strauss, G. P., McMahon, R. P., Frank, M. J., & Gold, J. M. (2013). Hypothetical decision making in schizophrenia: the role of expected value computation and “irrational” biases. Psychiatry Res, 209(2), 142–149. DOI: 10.1016/j.psychres.2013.02.034
- 7Brown, V. M., Chen, J., Gillan, C. M., & Price, R. B. (2020). Improving the Reliability of Computational Analyses: Model-Based Planning and Its Relationship With Compulsivity. Biol Psychiatry Cogn Neurosci Neuroimaging, 5(6), 601–609. DOI: 10.1016/j.bpsc.2019.12.019
- 8Browning, M., Carter, C. S., Chatham, C., Den Ouden, H., Gillan, C. M., Baker, J. T., Chekroud, A. M., Cools, R., Dayan, P., Gold, J., Goldstein, R. Z., Hartley, C. A., Kepecs, A., Lawson, R. P., Mourao-Miranda, J., Phillips, M. L., Pizzagalli, D. A., Powers, A., Rindskopf, D., … Paulus, M. (2020). Realizing the Clinical Potential of Computational Psychiatry: Report From the Banbury Center Meeting, February 2019. Biol Psychiatry, 88(2), e5–e10. DOI: 10.1016/j.biopsych.2019.12.026
- 9Busemeyer, J. R., & Wang, Y. M. (2000). Model Comparisons and Model Selections Based on Generalization Criterion Methodology. J Math Psychol, 44(1), 171–189. DOI: 10.1006/jmps.1999.1282
- 10Charpentier, C. J., Aylward, J., Roiser, J. P., & Robinson, O. J. (2017). Enhanced Risk Aversion, But Not Loss Aversion, in Unmedicated Pathological Anxiety. Biol Psychiatry, 81(12), 1014–1022. DOI: 10.1016/j.biopsych.2016.12.010
- 11Charpentier, C. J., De Martino, B., Sim, A. L., Sharot, T., & Roiser, J. P. (2016). Emotion-induced loss aversion and striatal-amygdala coupling in low-anxious individuals. Soc Cogn Affect Neurosci, 11(4), 569–579. DOI: 10.1093/scan/nsv139
- 12Chung, D., Kadlec, K., Aimone, J. A., McCurry, K., King-Casas, B., & Chiu, P. H. (2017). Valuation in major depression is intact and stable in a non-learning environment. Sci Rep, 7, 44374. DOI: 10.1038/srep44374
- 13Daw, N. D. (2011).
Trial-by-trial data analysis using computational models . In Decision Making, Affect, and Learning: Attention and Performance XXIII. Oxford University Press. DOI: 10.1093/acprof:oso/9780199600434.003.0001 - 14Daw, N. D., & Doya, K. (2006). The computational neurobiology of learning and reward. Curr Opin Neurobiol, 16(2), 199–204. DOI: 10.1016/j.conb.2006.03.006
- 15Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876–879. DOI: 10.1038/nature04766
- 16Dayan, P., & Niv, Y. (2008). Reinforcement learning: the good, the bad and the ugly. Curr Opin Neurobiol, 18(2), 185–196. DOI: 10.1016/j.conb.2008.08.003
- 17Eckstein, M. K., Master, S. L., Xia, L., Dahl, R. E., Wilbrecht, L., & Collins, A. G. E. (2022). The Interpretation of Computational Model Parameters Depends on the Context. Preprint at bioRxiv. DOI: 10.1101/2021.05.28.446162
- 18Elliott, M. L., Knodt, A. R., Ireland, D., Morris, M. L., Poulton, R., Ramrakha, S., Sison, M. L., Moffitt, T. E., Caspi, A., & Hariri, A. R. (2020). What Is the Test-Retest Reliability of Common Task-Functional MRI Measures? New Empirical Evidence and a Meta-Analysis. Psychol Sci, 31(7), 792–806. DOI: 10.1177/0956797620916786
- 19Enkavi, A. Z., Eisenberg, I. W., Bissett, P. G., Mazza, G. L., MacKinnon, D. P., Marsch, L. A., & Poldrack, R. A. (2019). Large-scale analysis of test-retest reliabilities of self-regulation measures. Proc Natl Acad Sci U S A, 116(12), 5472–5477. DOI: 10.1073/pnas.1818430116
- 20Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods, 39(2), 175–191. DOI: 10.3758/BF03193146
- 21Fleiss, J. L. (2011). Reliability of Measurement. In The Design and Analysis of Clinical Experiments (pp. 1–32). DOI: 10.1002/9781118032923.ch1
- 22Glockner, A., & Pachur, T. (2012). Cognitive models of risky choice: parameter stability and predictive accuracy of prospect theory. Cognition, 123(1), 21–32. DOI: 10.1016/j.cognition.2011.12.002
- 23Hadlaczky, G., Hokby, S., Mkrtchian, A., Wasserman, D., Balazs, J., Machin, N., Sarchiapone, M., Sisask, M., & Carli, V. (2018). Decision-Making in Suicidal Behavior: The Protective Role of Loss Aversion. Front Psychiatry, 9, 116. DOI: 10.3389/fpsyt.2018.00116
- 24Haines, N., Kvam, P., Irving, L., Smith, C., Beauchaine, T. P., Pitt, M. A., Ahn, W.-Y., & Turner, B. (2020). Learning from the Reliability Paradox: How Theoretically Informed Generative Models Can Advance the Social, Behavioral, and Brain Sciences. PsyArXiv. DOI: 10.31234/osf.io/xr7y3
- 25Hartley, C. A., & Phelps, E. A. (2012). Anxiety and decision-making. Biol Psychiatry, 72(2), 113–118. DOI: 10.1016/j.biopsych.2011.12.027
- 26Hedge, C., Powell, G., & Sumner, P. (2018). The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behav Res Methods, 50(3), 1166–1186. DOI: 10.3758/s13428-017-0935-1
- 27Huys, Q. J. M., Browning, M., Paulus, M. P., & Frank, M. J. (2021). Advances in the computational understanding of mental illness. Neuropsychopharmacology, 46(1), 3–19. DOI: 10.1038/s41386-020-0746-4
- 28Huys, Q. J. M., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nat Neurosci, 19(3), 404–413. DOI: 10.1038/nn.4238
- 29Kahneman, D., & Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47(2), 263–291. DOI: 10.2307/1914185
- 30Klaus, F., Chumbley, J. R., Seifritz, E., Kaiser, S., & Hartmann-Riemer, M. (2020). Loss Aversion and Risk Aversion in Non-Clinical Negative Symptoms and Hypomania. Front Psychiatry, 11, 574131. DOI: 10.3389/fpsyt.2020.574131
- 31Koo, T. K., & Li, M. Y. (2016). A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med, 15(2), 155–163. DOI: 10.1016/j.jcm.2016.02.012
- 32Kruschke, J. K. (2015). Doing Bayesian Data Analysis: A tutorial with R, JAGS, and Stan (Second ed.). Academic Press. DOI: 10.1016/B978-0-12-405888-0.00008-8
- 33Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: a practical primer for t-tests and ANOVAs [Review]. Frontiers in Psychology, 4(863), 863. DOI: 10.3389/fpsyg.2013.00863
- 34Maia, T. V. (2009). Reinforcement learning, conditioning, and the brain: Successes and challenges. Cogn Affect Behav Neurosci, 9(4), 343–364. DOI: 10.3758/CABN.9.4.343
- 35Maia, T. V., & Frank, M. J. (2011). From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci, 14(2), 154–162. DOI: 10.1038/nn.2723
- 36McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(1), 30–46. DOI: 10.1037/1082-989X.1.1.30
- 37Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends Cogn Sci, 16(1), 72–80. DOI: 10.1016/j.tics.2011.11.018
- 38Montague, P. R., Hyman, S. E., & Cohen, J. D. (2004). Computational roles for dopamine in behavioural control. Nature, 431(7010), 760–767. DOI: 10.1038/nature03015
- 39Moutoussis, M., Bullmore, E. T., Goodyer, I. M., Fonagy, P., Jones, P. B., Dolan, R. J., Dayan, P., & Neuroscience in Psychiatry Network Research, C. (2018). Change, stability, and instability in the Pavlovian guidance of behaviour from adolescence to young adulthood. PLoS Comput Biol, 14(12),
e1006679 . DOI: 10.1371/journal.pcbi.1006679 - 40Nair, A., Rutledge, R. B., & Mason, L. (2020). Under the Hood: Using Computational Psychiatry to Make Psychological Therapies More Mechanism-Focused. Front Psychiatry, 11, 140. DOI: 10.3389/fpsyt.2020.00140
- 41Niv, N. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53(3), 139–154. DOI: 10.1016/j.jmp.2008.12.005
- 42Noble, S., Scheinost, D., & Constable, R. T. (2019). A decade of test-retest reliability of functional connectivity: A systematic review and meta-analysis. Neuroimage, 203, 116157. DOI: 10.1016/j.neuroimage.2019.116157
- 43Nord, C. L., Gray, A., Charpentier, C. J., Robinson, O. J., & Roiser, J. P. (2017). Unreliability of putative fMRI biomarkers during emotional face processing. Neuroimage, 156, 119–127. DOI: 10.1016/j.neuroimage.2017.05.024
- 44Palminteri, S., & Chevallier, C. (2018). Can We Infer Inter-Individual Differences in Risk-Taking From Behavioral Tasks? Front Psychol, 9, 2307. DOI: 10.3389/fpsyg.2018.02307
- 45Palminteri, S., Wyart, V., & Koechlin, E. (2017). The Importance of Falsification in Computational Cognitive Modeling. Trends Cogn Sci, 21(6), 425–433. DOI: 10.1016/j.tics.2017.03.011
- 46Paulus, M. P., Huys, Q. J., & Maia, T. V. (2016). A Roadmap for the Development of Applied Computational Psychiatry. Biol Psychiatry Cogn Neurosci Neuroimaging, 1(5), 386–392. DOI: 10.1016/j.bpsc.2016.05.001
- 47Pike, A. C., Tan, K., Ansari, H. J., Wing, M., & Robinson, O. J. (2022). Test-retest reliability of affective bias tasks. Preprint at PsyArXiv. DOI: 10.31234/osf.io/n2fkh
- 48Plichta, M. M., Schwarz, A. J., Grimm, O., Morgen, K., Mier, D., Haddad, L., Gerdes, A. B., Sauer, C., Tost, H., Esslinger, C., Colman, P., Wilson, F., Kirsch, P., & Meyer-Lindenberg, A. (2012). Test-retest reliability of evoked BOLD signals from a cognitive-emotive fMRI test battery. Neuroimage, 60(3), 1746–1758. DOI: 10.1016/j.neuroimage.2012.01.129
- 49Price, R. B., Brown, V., & Siegle, G. J. (2019). Computational Modeling Applied to the Dot-Probe Task Yields Improved Reliability and Mechanistic Insights. Biol Psychiatry, 85(7), 606–612. DOI: 10.1016/j.biopsych.2018.09.022
- 50Rodebaugh, T. L., Scullin, R. B., Langer, J. K., Dixon, D. J., Huppert, J. D., Bernstein, A., Zvielli, A., & Lenze, E. J. (2016). Unreliability as a threat to understanding psychopathology: The cautionary tale of attentional bias. J Abnorm Psychol, 125(6), 840–851. DOI: 10.1037/abn0000184
- 51Ruggeri, K., Ali, S., Berge, M. L., Bertoldo, G., Bjorndal, L. D., Cortijos-Bernabeu, A., Davison, C., Demic, E., Esteban-Serna, C., Friedemann, M., Gibson, S. P., Jarke, H., Karakasheva, R., Khorrami, P. R., Kveder, J., Andersen, T. L., Lofthus, I. S., McGill, L., Nieto, A. E., … Folke, T. (2020). Replicating patterns of prospect theory for decision under risk. Nat Hum Behav, 4(6), 622–633. DOI: 10.1038/s41562-020-0886-x
- 52Scheibehenne, B., & Pachur, T. (2015). Using Bayesian hierarchical parameter estimation to assess the generalizability of cognitive models of choice. Psychon Bull Rev, 22(2), 391–407. DOI: 10.3758/s13423-014-0684-4
- 53Schonberg, T., Fox, C. R., & Poldrack, R. A. (2011). Mind the gap: bridging economic and naturalistic risk-taking with cognitive neuroscience. Trends Cogn Sci, 15(1), 11–19. DOI: 10.1016/j.tics.2010.10.002
- 54Seymour, B., Daw, N. D., Roiser, J. P., Dayan, P., & Dolan, R. (2012). Serotonin selectively modulates reward value in human decision-making. J Neurosci, 32(17), 5833–5842. DOI: 10.1523/JNEUROSCI.0053-12.2012
- 55Shahar, N., Hauser, T. U., Moutoussis, M., Moran, R., Keramati, M., consortium, N., & Dolan, R. J. (2019). Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-times and drift-diffusion modeling. PLoS Comput Biol, 15(2),
e1006803 . DOI: 10.1371/journal.pcbi.1006803 - 56Sip, K. E., Gonzalez, R., Taylor, S. F., & Stern, E. R. (2017). Increased Loss Aversion in Unmedicated Patients with Obsessive-Compulsive Disorder. Front Psychiatry, 8, 309. DOI: 10.3389/fpsyt.2017.00309
- 57Sokol-Hessner, P., Hsu, M., Curley, N. G., Delgado, M. R., Camerer, C. F., & Phelps, E. A. (2009). Thinking like a trader selectively reduces individuals’ loss aversion. Proc Natl Acad Sci U S A, 106(13), 5035–5040. DOI: 10.1073/pnas.0806761106
- 58Sokol-Hessner, P., & Rutledge, R. B. (2019). The Psychological and Neural Basis of Loss Aversion. Current Directions in Psychological Science, 28(1), 20–27. DOI: 10.1177/0963721418806510
- 59Speekenbrink, M., & Konstantinidis, E. (2015). Uncertainty and exploration in a restless bandit problem. Top Cogn Sci, 7(2), 351–367. DOI: 10.1111/tops.12145
- 60Stauffer, W. R., Lak, A., & Schultz, W. (2014). Dopamine reward prediction error responses reflect marginal utility. Current biology, 24(21), 2491–2500. DOI: 10.1016/j.cub.2014.08.064
- 61Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction (Second ed.). MIT Press.
- 62Tobler, P. N., Christopoulos, G. I., O’Doherty, J. P., Dolan, R. J., & Schultz, W. (2009). Risk-dependent reward value signal in human prefrontal cortex. PNAS, 106(17), 7185–7190. DOI: 10.1073/pnas.0809599106
- 63Tremeau, F., Brady, M., Saccente, E., Moreno, A., Epstein, H., Citrome, L., Malaspina, D., & Javitt, D. (2008). Loss aversion in schizophrenia. Schizophr Res, 103(1–3), 121–128. DOI: 10.1016/j.schres.2008.03.027
- 64Tversky, A., & Kahneman, D. (1992). Advances in Prospect Theory: Cumulative Representation of Uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323. DOI: 10.1007/BF00122574
- 65Valton, V., Wise, T., & Robinson, O. J. (2020). Recommendations for Bayesian hierarchical model specifications for case-control studies in mental health. Machine Learning for Health (ML4H) at NeurIPS 2020, 34th Conference on Neural Information Processing Systems. arXiv:2011.01725 [cs.CY] Ithaca.
- 66Waltmann, M., Schlagenhauf, F., & Deserno, L. (2022). Sufficient reliability of the behavioral and computational readouts of a probabilistic reversal learning task. Behavior research methods. DOI: 10.3758/s13428-021-01739-7
- 67Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. Elife, 8. DOI: 10.7554/eLife.49547
- 68Yi, M. S. K., Steyvers, M., & Lee, M. (2009). Modeling Human Performance in Restless Bandits with Particle Filters. The Journal of Problem Solving, 2(2). DOI: 10.7771/1932-6246.1060
