Have a personal or library account? Click to login
Interaction between Functional Connectivity and Neural Excitability in Autism: A Novel Framework for Computational Modeling and Application to Biological Data Cover

Interaction between Functional Connectivity and Neural Excitability in Autism: A Novel Framework for Computational Modeling and Application to Biological Data

Open Access
|Jan 2023

References

  1. 1Beauchamp, M. S., Lee, K. E., Argall, B. D., & Martin, A. (2004). Integration of Auditory and Visual Information about Objects in Superior Temporal Sulcus. Neuron, 41(5), 809823. DOI: 10.1016/S0896-6273(04)00070-4
  2. 2Bernstein, M., & Yovel, G. (2015). Two neural pathways of face processing: A critical evaluation of current models. Neurosci Biobehav Rev, 55, 536546. DOI: 10.1016/j.neubiorev.2015.06.010
  3. 3Cohen, J. D., Daw, N., Engelhardt, B., Hasson, U., Li, K., Niv, Y., Norman, K. A., Pillow, J., Ramadge, P. J., Turk-Browne, N. B., & Willke, T. L. (2017). Computational approaches to fMRI analysis. Nature neuroscience, 20(3), 304313. DOI: 10.1038/nn.4499
  4. 4Craddock, C., Benhajali, Y., Chu, C., Chouinard, F., Evans, A., Jakab, A., Khundrakpam, B. S., Lewis, J. D., Li, Q., & Milham, M. (2013). The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics, 7. DOI: 10.3389/conf.fninf.2013.09.00041
  5. 5Cross, L., Cockburn, J., Yue, Y., & O’Doherty, J. P. (2021). Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments. Neuron, 109(4), 724738.e727. DOI: 10.1016/j.neuron.2020.11.021
  6. 6D’Cruz, A.-M., Ragozzino, M. E., Mosconi, M. W., Shrestha, S., Cook, E. H., & Sweeney, J. A. (2013). Reduced behavioral flexibility in autism spectrum disorders. Neuropsychology, 27, 152160. DOI: 10.1037/a0031721
  7. 7Deen, B., Saxe, R., & Kanwisher, N. (2020). Processing communicative facial and vocal cues in the superior temporal sulcus. NeuroImage, 221, 117191. DOI: 10.1016/j.neuroimage.2020.117191
  8. 8Dezfouli, A., Griffiths, K., Ramos, F., Dayan, P., & Balleine, B. W. (2019). Models that learn how humans learn: The case of decision-making and its disorders. PLoS Comput Biol, 15(6), e1006903. DOI: 10.1371/journal.pcbi.1006903
  9. 9Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S., Assaf, M., Bookheimer, S. Y., Dapretto, M., Deen, B., Delmonte, S., Dinstein, I., Ertl-Wagner, B., Fair, D. A., Gallagher, L., Kennedy, D. P., Keown, C. L., Keysers, C., … Milham, M. P. (2014). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular psychiatry, 19(6), 659667. DOI: 10.1038/mp.2013.78
  10. 10Dickinson, A., Jones, M., & Milne, E. (2016). Measuring neural excitation and inhibition in autism: Different approaches, different findings and different interpretations. Brain research, 1648, 277289. DOI: 10.1016/j.brainres.2016.07.011
  11. 11Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 12731302. DOI: 10.1016/S1053-8119(03)00202-7
  12. 12Friston, K. J., Stephan, K. E., Montague, R., & Dolan, R. J. (2014). Computational psychiatry: the brain as a phantastic organ. Lancet Psychiatry, 1(2), 148158. DOI: 10.1016/S2215-0366(14)70275-5
  13. 13Fusar-Poli, P., Placentino, A., Carletti, F., Landi, P., Allen, P., Surguladze, S., Benedetti, F., Abbamonte, M., Gasparotti, R., Barale, F., Perez, J., McGuire, P., & Politi, P. (2009). Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. Journal of psychiatry & neuroscience: JPN, 34(6), 418432. https://pubmed.ncbi.nlm.nih.gov/19949718. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783433/
  14. 14Gläscher, J. P., & O’Doherty, J. P. (2010). Model-based approaches to neuroimaging: combining reinforcement learning theory with fMRI data. WIREs Cognitive Science, 1(4), 501510. DOI: 10.1002/wcs.57
  15. 15Gobbini, M. I., & Haxby, J. V. (2007). Neural systems for recognition of familiar faces. Neuropsychologia, 45(1), 3241. DOI: 10.1016/j.neuropsychologia.2006.04.015
  16. 16Haker, H., Schneebeli, M., & Stephan, K. E. (2016). Can Bayesian theories of autism spectrum disorder help improve clinical practice? Frontiers in psychiatry, 7, 107. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911361/pdf/fpsyt-07-00107.pdf. DOI: 10.3389/fpsyt.2016.00107
  17. 17Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2002). Human neural systems for face recognition and social communication. Biological psychiatry, 51(1), 5967. DOI: 10.1016/S0006-3223(01)01330-0
  18. 18Hegarty, J. P., Weber, D. J., Cirstea, C. M., & Beversdorf, D. Q. (2018). Cerebro-Cerebellar Functional Connectivity is Associated with Cerebellar Excitation–Inhibition Balance in Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 48(10), 34603473. DOI: 10.1007/s10803-018-3613-y
  19. 19Hull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C. M., Irimia, A., & Van Horn, J. D. (2017). Resting-State Functional Connectivity in Autism Spectrum Disorders: A Review [Review]. Frontiers in psychiatry, 7(205). DOI: 10.3389/fpsyt.2016.00205
  20. 20Hunsberger, E., Scott, M., & Eliasmith, C. (2014). The competing benefits of noise and heterogeneity in neural coding. Neural Comput, 26(8), 16001623. DOI: 10.1162/NECO_a_00621
  21. 21Idei, H., Murata, S., Chen, Y., Yamashita, Y., Tani, J., & Ogata, T. (2018). A Neurorobotics Simulation of Autistic Behavior Induced by Unusual Sensory Precision. Computational Psychiatry, 119.
  22. 22Idei, H., Murata, S., Yamashita, Y., & Ogata, T. (2020). Homogeneous Intrinsic Neuronal Excitability Induces Overfitting to Sensory Noise: A Robot Model of Neurodevelopmental Disorder. Front Psychiatry, 11, 762. DOI: 10.3389/fpsyt.2020.00762
  23. 23Idei, H., Murata, S., Yamashita, Y., & Ogata, T. (2021). Paradoxical sensory reactivity induced by functional disconnection in a robot model of neurodevelopmental disorder. Neural Networks, 138, 150163. DOI: 10.1016/j.neunet.2021.01.033
  24. 24Itahashi, T., Yamada, T., Watanabe, H., Nakamura, M., Jimbo, D., Shioda, S., Toriizuka, K., Kato, N., & Hashimoto, R. (2014). Altered network topologies and hub organization in adults with autism: a resting-state fMRI study. PLoS One, 9(4), e94115. DOI: 10.1371/journal.pone.0094115
  25. 25Karvelis, P., Seitz, A. R., Lawrie, S. M., & Seriès, P. (2018). Autistic traits, but not schizotypy, predict increased weighting of sensory information in Bayesian visual integration. Elife, 7, e34115. DOI: 10.7554/eLife.34115.032
  26. 26Lanillos, P., Oliva, D., Philippsen, A., Yamashita, Y., Nagai, Y., & Cheng, G. (2020). A review on neural network models of schizophrenia and autism spectrum disorder. Neural Networks, 122, 338363. DOI: 10.1016/j.neunet.2019.10.014
  27. 27Lawson, R. P., Mathys, C., & Rees, G. (2017). Adults with autism overestimate the volatility of the sensory environment. Nature neuroscience, 20(9), 1293. DOI: 10.1038/nn.4615
  28. 28Lawson, R. P., Rees, G., & Friston, K. J. (2014). An aberrant precision account of autism. Front Hum Neurosci, 8, 302. DOI: 10.3389/fnhum.2014.00302
  29. 29Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659685. DOI: 10.1007/BF02172145
  30. 30Makris, N., Goldstein, J. M., Kennedy, D., Hodge, S. M., Caviness, V. S., Faraone, S. V., Tsuang, M. T., & Seidman, L. J. (2006). Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophrenia Research, 83(2), 155171. DOI: 10.1016/j.schres.2005.11.020
  31. 31Mejias, J. F., & Longtin, A. (2012). Optimal Heterogeneity for Coding in Spiking Neural Networks. Physical Review Letters, 108(22), 228102. DOI: 10.1103/PhysRevLett.108.228102
  32. 32Mejias, J. F., & Longtin, A. (2014). Differential effects of excitatory and inhibitory heterogeneity on the gain and asynchronous state of sparse cortical networks. Front Comput Neurosci, 8, 107. DOI: 10.3389/fncom.2014.00107
  33. 33Murata, S., Namikawa, J., Arie, H., Sugano, S., & Tani, J. (2013). Learning to reproduce fluctuating time series by inferring their time-dependent stochastic properties: Application in robot learning via tutoring. IEEE Transactions on Autonomous Mental Development, 5(4), 298310. DOI: 10.1109/TAMD.2013.2258019
  34. 34Murata, S., Yamashita, Y., Arie, H., Ogata, T., Sugano, S., & Tani, J. (2017). Learning to Perceive the World as Probabilistic or Deterministic via Interaction With Others: A Neuro-Robotics Experiment. IEEE Trans Neural Netw Learn Syst, 28(4), 830848. DOI: 10.1109/TNNLS.2015.2492140
  35. 35Pellicano, E., & Burr, D. (2012). When the world becomes ‘too real’: a Bayesian explanation of autistic perception. Trends Cogn Sci, 16(10), 504510. DOI: 10.1016/j.tics.2012.08.009
  36. 36Philippsen, A., & Nagai, Y. (2018). Understanding the cognitive mechanisms underlying autistic behavior: a recurrent neural network study. 2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob). DOI: 10.1109/DEVLRN.2018.8761038
  37. 37Philippsen, A., & Nagai, Y. (2020). Deficits in Prediction Ability Trigger Asymmetries in Behavior and Internal Representation [Review]. Frontiers in psychiatry, 11(1253). DOI: 10.3389/fpsyt.2020.564415
  38. 38Sabatinelli, D., Fortune, E. E., Li, Q., Siddiqui, A., Krafft, C., Oliver, W. T., Beck, S., & Jeffries, J. (2011). Emotional perception: Meta-analyses of face and natural scene processing. NeuroImage, 54(3), 25242533. DOI: 10.1016/j.neuroimage.2010.10.011
  39. 39Schmitt, L. M., Bojanek, E., White, S. P., Ragozzino, M. E., Cook, E. H., Sweeney, J. A., & Mosconi, M. W. (2019). Familiality of behavioral flexibility and response inhibition deficits in autism spectrum disorder (ASD). Mol Autism, 10(1), 47. DOI: 10.1186/s13229-019-0296-y
  40. 40Siegel-Ramsay, J. E., Romaniuk, L., Whalley, H. C., Roberts, N., Branigan, H., Stanfield, A. C., Lawrie, S. M., & Dauvermann, M. R. (2021). Glutamate and functional connectivity - support for the excitatory-inhibitory imbalance hypothesis in autism spectrum disorders. Psychiatry Research: Neuroimaging, 313, 111302. DOI: 10.1016/j.pscychresns.2021.111302
  41. 41Soltani, A., Murray, J. D., Seo, H., & Lee, D. (2021). Timescales of cognition in the brain. Current Opinion in Behavioral Sciences, 41, 3037. DOI: 10.1016/j.cobeha.2021.03.003
  42. 42Takahashi, Y., Murata, S., Idei, H., Tomita, H., & Yamashita, Y. (2021). Neural network modeling of altered facial expression recognition in autism spectrum disorders based on predictive processing framework. Scientific reports, 11(1), 14684. DOI: 10.1038/s41598-021-94067-x
  43. 43Tani, J. (2003). Learning to generate articulated behavior through the bottom-up and the top-down interaction processes. Neural Networks, 16(1), 1123. https://ac.els-cdn.com/S0893608002002149/1-s2.0-S0893608002002149-main.pdf?_tid=46e48d72-2961-4e73-ba9b-d0ddaf28335b&acdnat=1536928184_04fc37ef6c653143d88a9ddeadfd1536. DOI: 10.1016/S0893-6080(02)00214-9
  44. 44Thomas, M. S., Davis, R., Karmiloff-Smith, A., Knowland, V. C., & Charman, T. (2016). The over-pruning hypothesis of autism. Developmental Science, 19(2), 284305. DOI: 10.1111/desc.12303
  45. 45Van de Cruys, S., de-Wit, L., Evers, K., Boets, B., & Wagemans, J. (2013). Weak Priors versus Overfitting of Predictions in Autism: Reply to Pellicano and Burr (TICS, 2012). i-Perception, 4(2), 9597. DOI: 10.1068/i0580ic
  46. 46Vasa, R. A., Mostofsky, S. H., & Ewen, J. B. (2016). The Disrupted Connectivity Hypothesis of Autism Spectrum Disorders: Time for the Next Phase in Research. Biol Psychiatry Cogn Neurosci Neuroimaging, 1(3), 245252. DOI: 10.1016/j.bpsc.2016.02.003
  47. 47Wang, X., Song, Y., Zhen, Z., & Liu, J. (2016). Functional integration of the posterior superior temporal sulcus correlates with facial expression recognition. Hum Brain Mapp, 37(5), 19301940. DOI: 10.1002/hbm.23145
  48. 48Wicker, B., Keysers, C., Plailly, J., Royet, J.-P., Gallese, V., & Rizzolatti, G. (2003). Both of Us Disgusted in My Insula: The Common Neural Basis of Seeing and Feeling Disgust. Neuron, 40(3), 655664. DOI: 10.1016/S0896-6273(03)00679-2
  49. 49Wright, P., He, G., Shapira, N. A., Goodman, W. K., & Liu, Y. (2004). Disgust and the insula: fMRI responses to pictures of mutilation and contamination. NeuroReport, 15(15), 23472351. DOI: 10.1097/00001756-200410250-00009
  50. 50Xu, P., Peng, S., Luo, Y. J., & Gong, G. (2021). Facial expression recognition: A meta-analytic review of theoretical models and neuroimaging evidence. Neurosci Biobehav Rev, 127, 820836. DOI: 10.1016/j.neubiorev.2021.05.023
  51. 51Yamagata, B., Itahashi, T., Fujino, J., Ohta, H., Nakamura, M., Kato, N., Mimura, M., Hashimoto, R.-i., & Aoki, Y. (2019). Machine learning approach to identify a resting-state functional connectivity pattern serving as an endophenotype of autism spectrum disorder. Brain imaging and behavior, 13(6), 16891698. DOI: 10.1007/s11682-018-9973-2
  52. 52Yamashita, Y., & Tani, J. (2008). Emergence of Functional Hierarchy in a Multiple Timescale Neural Network Model: A Humanoid Robot Experiment. PLOS Computational Biology, 4(11), e1000220. DOI: 10.1371/journal.pcbi.1000220
  53. 53Yamashita, Y., & Tani, J. (2012). Spontaneous prediction error generation in schizophrenia. PLoS One, 7(5), e37843. DOI: 10.1371/journal.pone.0037843
  54. 54Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T., & Wang, X. J. (2019). Task representations in neural networks trained to perform many cognitive tasks. Nat Neurosci, 22(2), 297306. DOI: 10.1038/s41593-018-0310-2
  55. 55Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22(1), 394400. DOI: 10.1016/j.neuroimage.2003.12.030
DOI: https://doi.org/10.5334/cpsy.93 | Journal eISSN: 2379-6227
Language: English
Submitted on: Jun 21, 2022
Accepted on: Jan 9, 2023
Published on: Jan 20, 2023
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Yuta Takahashi, Shingo Murata, Masao Ueki, Hiroaki Tomita, Yuichi Yamashita, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.