References
- 1Beauchamp, M. S., Lee, K. E., Argall, B. D., & Martin, A. (2004). Integration of Auditory and Visual Information about Objects in Superior Temporal Sulcus. Neuron, 41(5), 809–823. DOI: 10.1016/S0896-6273(04)00070-4
- 2Bernstein, M., & Yovel, G. (2015). Two neural pathways of face processing: A critical evaluation of current models. Neurosci Biobehav Rev, 55, 536–546. DOI: 10.1016/j.neubiorev.2015.06.010
- 3Cohen, J. D., Daw, N., Engelhardt, B., Hasson, U., Li, K., Niv, Y., Norman, K. A., Pillow, J., Ramadge, P. J., Turk-Browne, N. B., & Willke, T. L. (2017). Computational approaches to fMRI analysis. Nature neuroscience, 20(3), 304–313. DOI: 10.1038/nn.4499
- 4Craddock, C., Benhajali, Y., Chu, C., Chouinard, F., Evans, A., Jakab, A., Khundrakpam, B. S., Lewis, J. D., Li, Q., & Milham, M. (2013). The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics, 7. DOI: 10.3389/conf.fninf.2013.09.00041
- 5Cross, L., Cockburn, J., Yue, Y., & O’Doherty, J. P. (2021). Using deep reinforcement learning to reveal how the brain encodes abstract state-space representations in high-dimensional environments. Neuron, 109(4), 724–738.e727. DOI: 10.1016/j.neuron.2020.11.021
- 6D’Cruz, A.-M., Ragozzino, M. E., Mosconi, M. W., Shrestha, S., Cook, E. H., & Sweeney, J. A. (2013). Reduced behavioral flexibility in autism spectrum disorders. Neuropsychology, 27, 152–160. DOI: 10.1037/a0031721
- 7Deen, B., Saxe, R., & Kanwisher, N. (2020). Processing communicative facial and vocal cues in the superior temporal sulcus. NeuroImage, 221, 117191. DOI: 10.1016/j.neuroimage.2020.117191
- 8Dezfouli, A., Griffiths, K., Ramos, F., Dayan, P., & Balleine, B. W. (2019). Models that learn how humans learn: The case of decision-making and its disorders. PLoS Comput Biol, 15(6),
e1006903 . DOI: 10.1371/journal.pcbi.1006903 - 9Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S., Assaf, M., Bookheimer, S. Y., Dapretto, M., Deen, B., Delmonte, S., Dinstein, I., Ertl-Wagner, B., Fair, D. A., Gallagher, L., Kennedy, D. P., Keown, C. L., Keysers, C., … Milham, M. P. (2014). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular psychiatry, 19(6), 659–667. DOI: 10.1038/mp.2013.78
- 10Dickinson, A., Jones, M., & Milne, E. (2016). Measuring neural excitation and inhibition in autism: Different approaches, different findings and different interpretations. Brain research, 1648, 277–289. DOI: 10.1016/j.brainres.2016.07.011
- 11Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 1273–1302. DOI: 10.1016/S1053-8119(03)00202-7
- 12Friston, K. J., Stephan, K. E., Montague, R., & Dolan, R. J. (2014). Computational psychiatry: the brain as a phantastic organ. Lancet Psychiatry, 1(2), 148–158. DOI: 10.1016/S2215-0366(14)70275-5
- 13Fusar-Poli, P., Placentino, A., Carletti, F., Landi, P., Allen, P., Surguladze, S., Benedetti, F., Abbamonte, M., Gasparotti, R., Barale, F., Perez, J., McGuire, P., & Politi, P. (2009). Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. Journal of psychiatry & neuroscience: JPN, 34(6), 418–432. https://pubmed.ncbi.nlm.nih.gov/19949718.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2783433/ - 14Gläscher, J. P., & O’Doherty, J. P. (2010). Model-based approaches to neuroimaging: combining reinforcement learning theory with fMRI data. WIREs Cognitive Science, 1(4), 501–510. DOI: 10.1002/wcs.57
- 15Gobbini, M. I., & Haxby, J. V. (2007). Neural systems for recognition of familiar faces. Neuropsychologia, 45(1), 32–41. DOI: 10.1016/j.neuropsychologia.2006.04.015
- 16Haker, H., Schneebeli, M., & Stephan, K. E. (2016). Can Bayesian theories of autism spectrum disorder help improve clinical practice? Frontiers in psychiatry, 7, 107.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911361/pdf/fpsyt-07-00107.pdf . DOI: 10.3389/fpsyt.2016.00107 - 17Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2002). Human neural systems for face recognition and social communication. Biological psychiatry, 51(1), 59–67. DOI: 10.1016/S0006-3223(01)01330-0
- 18Hegarty, J. P., Weber, D. J., Cirstea, C. M., & Beversdorf, D. Q. (2018). Cerebro-Cerebellar Functional Connectivity is Associated with Cerebellar Excitation–Inhibition Balance in Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 48(10), 3460–3473. DOI: 10.1007/s10803-018-3613-y
- 19Hull, J. V., Dokovna, L. B., Jacokes, Z. J., Torgerson, C. M., Irimia, A., & Van Horn, J. D. (2017). Resting-State Functional Connectivity in Autism Spectrum Disorders: A Review [Review]. Frontiers in psychiatry, 7(205). DOI: 10.3389/fpsyt.2016.00205
- 20Hunsberger, E., Scott, M., & Eliasmith, C. (2014). The competing benefits of noise and heterogeneity in neural coding. Neural Comput, 26(8), 1600–1623. DOI: 10.1162/NECO_a_00621
- 21Idei, H., Murata, S., Chen, Y., Yamashita, Y., Tani, J., & Ogata, T. (2018). A Neurorobotics Simulation of Autistic Behavior Induced by Unusual Sensory Precision. Computational Psychiatry, 1–19.
- 22Idei, H., Murata, S., Yamashita, Y., & Ogata, T. (2020). Homogeneous Intrinsic Neuronal Excitability Induces Overfitting to Sensory Noise: A Robot Model of Neurodevelopmental Disorder. Front Psychiatry, 11, 762. DOI: 10.3389/fpsyt.2020.00762
- 23Idei, H., Murata, S., Yamashita, Y., & Ogata, T. (2021). Paradoxical sensory reactivity induced by functional disconnection in a robot model of neurodevelopmental disorder. Neural Networks, 138, 150–163. DOI: 10.1016/j.neunet.2021.01.033
- 24Itahashi, T., Yamada, T., Watanabe, H., Nakamura, M., Jimbo, D., Shioda, S., Toriizuka, K., Kato, N., & Hashimoto, R. (2014). Altered network topologies and hub organization in adults with autism: a resting-state fMRI study. PLoS One, 9(4),
e94115 . DOI: 10.1371/journal.pone.0094115 - 25Karvelis, P., Seitz, A. R., Lawrie, S. M., & Seriès, P. (2018). Autistic traits, but not schizotypy, predict increased weighting of sensory information in Bayesian visual integration. Elife, 7,
e34115 . DOI: 10.7554/eLife.34115.032 - 26Lanillos, P., Oliva, D., Philippsen, A., Yamashita, Y., Nagai, Y., & Cheng, G. (2020). A review on neural network models of schizophrenia and autism spectrum disorder. Neural Networks, 122, 338–363. DOI: 10.1016/j.neunet.2019.10.014
- 27Lawson, R. P., Mathys, C., & Rees, G. (2017). Adults with autism overestimate the volatility of the sensory environment. Nature neuroscience, 20(9), 1293. DOI: 10.1038/nn.4615
- 28Lawson, R. P., Rees, G., & Friston, K. J. (2014). An aberrant precision account of autism. Front Hum Neurosci, 8, 302. DOI: 10.3389/fnhum.2014.00302
- 29Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism Diagnostic Interview-Revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685. DOI: 10.1007/BF02172145
- 30Makris, N., Goldstein, J. M., Kennedy, D., Hodge, S. M., Caviness, V. S., Faraone, S. V., Tsuang, M. T., & Seidman, L. J. (2006). Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophrenia Research, 83(2), 155–171. DOI: 10.1016/j.schres.2005.11.020
- 31Mejias, J. F., & Longtin, A. (2012). Optimal Heterogeneity for Coding in Spiking Neural Networks. Physical Review Letters, 108(22), 228102. DOI: 10.1103/PhysRevLett.108.228102
- 32Mejias, J. F., & Longtin, A. (2014). Differential effects of excitatory and inhibitory heterogeneity on the gain and asynchronous state of sparse cortical networks. Front Comput Neurosci, 8, 107. DOI: 10.3389/fncom.2014.00107
- 33Murata, S., Namikawa, J., Arie, H., Sugano, S., & Tani, J. (2013). Learning to reproduce fluctuating time series by inferring their time-dependent stochastic properties: Application in robot learning via tutoring. IEEE Transactions on Autonomous Mental Development, 5(4), 298–310. DOI: 10.1109/TAMD.2013.2258019
- 34Murata, S., Yamashita, Y., Arie, H., Ogata, T., Sugano, S., & Tani, J. (2017). Learning to Perceive the World as Probabilistic or Deterministic via Interaction With Others: A Neuro-Robotics Experiment. IEEE Trans Neural Netw Learn Syst, 28(4), 830–848. DOI: 10.1109/TNNLS.2015.2492140
- 35Pellicano, E., & Burr, D. (2012). When the world becomes ‘too real’: a Bayesian explanation of autistic perception. Trends Cogn Sci, 16(10), 504–510. DOI: 10.1016/j.tics.2012.08.009
- 36Philippsen, A., & Nagai, Y. (2018). Understanding the cognitive mechanisms underlying autistic behavior: a recurrent neural network study. 2018 Joint IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob). DOI: 10.1109/DEVLRN.2018.8761038
- 37Philippsen, A., & Nagai, Y. (2020). Deficits in Prediction Ability Trigger Asymmetries in Behavior and Internal Representation [Review]. Frontiers in psychiatry, 11(1253). DOI: 10.3389/fpsyt.2020.564415
- 38Sabatinelli, D., Fortune, E. E., Li, Q., Siddiqui, A., Krafft, C., Oliver, W. T., Beck, S., & Jeffries, J. (2011). Emotional perception: Meta-analyses of face and natural scene processing. NeuroImage, 54(3), 2524–2533. DOI: 10.1016/j.neuroimage.2010.10.011
- 39Schmitt, L. M., Bojanek, E., White, S. P., Ragozzino, M. E., Cook, E. H., Sweeney, J. A., & Mosconi, M. W. (2019). Familiality of behavioral flexibility and response inhibition deficits in autism spectrum disorder (ASD). Mol Autism, 10(1), 47. DOI: 10.1186/s13229-019-0296-y
- 40Siegel-Ramsay, J. E., Romaniuk, L., Whalley, H. C., Roberts, N., Branigan, H., Stanfield, A. C., Lawrie, S. M., & Dauvermann, M. R. (2021). Glutamate and functional connectivity - support for the excitatory-inhibitory imbalance hypothesis in autism spectrum disorders. Psychiatry Research: Neuroimaging, 313, 111302. DOI: 10.1016/j.pscychresns.2021.111302
- 41Soltani, A., Murray, J. D., Seo, H., & Lee, D. (2021). Timescales of cognition in the brain. Current Opinion in Behavioral Sciences, 41, 30–37. DOI: 10.1016/j.cobeha.2021.03.003
- 42Takahashi, Y., Murata, S., Idei, H., Tomita, H., & Yamashita, Y. (2021). Neural network modeling of altered facial expression recognition in autism spectrum disorders based on predictive processing framework. Scientific reports, 11(1), 14684. DOI: 10.1038/s41598-021-94067-x
- 43Tani, J. (2003). Learning to generate articulated behavior through the bottom-up and the top-down interaction processes. Neural Networks, 16(1), 11–23.
https://ac.els-cdn.com/S0893608002002149/1-s2.0-S0893608002002149-main.pdf?_tid=46e48d72-2961-4e73-ba9b-d0ddaf28335b&acdnat=1536928184_04fc37ef6c653143d88a9ddeadfd1536 . DOI: 10.1016/S0893-6080(02)00214-9 - 44Thomas, M. S., Davis, R., Karmiloff-Smith, A., Knowland, V. C., & Charman, T. (2016). The over-pruning hypothesis of autism. Developmental Science, 19(2), 284–305. DOI: 10.1111/desc.12303
- 45Van de Cruys, S., de-Wit, L., Evers, K., Boets, B., & Wagemans, J. (2013). Weak Priors versus Overfitting of Predictions in Autism: Reply to Pellicano and Burr (TICS, 2012). i-Perception, 4(2), 95–97. DOI: 10.1068/i0580ic
- 46Vasa, R. A., Mostofsky, S. H., & Ewen, J. B. (2016). The Disrupted Connectivity Hypothesis of Autism Spectrum Disorders: Time for the Next Phase in Research. Biol Psychiatry Cogn Neurosci Neuroimaging, 1(3), 245–252. DOI: 10.1016/j.bpsc.2016.02.003
- 47Wang, X., Song, Y., Zhen, Z., & Liu, J. (2016). Functional integration of the posterior superior temporal sulcus correlates with facial expression recognition. Hum Brain Mapp, 37(5), 1930–1940. DOI: 10.1002/hbm.23145
- 48Wicker, B., Keysers, C., Plailly, J., Royet, J.-P., Gallese, V., & Rizzolatti, G. (2003). Both of Us Disgusted in My Insula: The Common Neural Basis of Seeing and Feeling Disgust. Neuron, 40(3), 655–664. DOI: 10.1016/S0896-6273(03)00679-2
- 49Wright, P., He, G., Shapira, N. A., Goodman, W. K., & Liu, Y. (2004). Disgust and the insula: fMRI responses to pictures of mutilation and contamination. NeuroReport, 15(15), 2347–2351. DOI: 10.1097/00001756-200410250-00009
- 50Xu, P., Peng, S., Luo, Y. J., & Gong, G. (2021). Facial expression recognition: A meta-analytic review of theoretical models and neuroimaging evidence. Neurosci Biobehav Rev, 127, 820–836. DOI: 10.1016/j.neubiorev.2021.05.023
- 51Yamagata, B., Itahashi, T., Fujino, J., Ohta, H., Nakamura, M., Kato, N., Mimura, M., Hashimoto, R.-i., & Aoki, Y. (2019). Machine learning approach to identify a resting-state functional connectivity pattern serving as an endophenotype of autism spectrum disorder. Brain imaging and behavior, 13(6), 1689–1698. DOI: 10.1007/s11682-018-9973-2
- 52Yamashita, Y., & Tani, J. (2008). Emergence of Functional Hierarchy in a Multiple Timescale Neural Network Model: A Humanoid Robot Experiment. PLOS Computational Biology, 4(11),
e1000220 . DOI: 10.1371/journal.pcbi.1000220 - 53Yamashita, Y., & Tani, J. (2012). Spontaneous prediction error generation in schizophrenia. PLoS One, 7(5),
e37843 . DOI: 10.1371/journal.pone.0037843 - 54Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T., & Wang, X. J. (2019). Task representations in neural networks trained to perform many cognitive tasks. Nat Neurosci, 22(2), 297–306. DOI: 10.1038/s41593-018-0310-2
- 55Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22(1), 394–400. DOI: 10.1016/j.neuroimage.2003.12.030
