Have a personal or library account? Click to login
Classifying Obsessive-Compulsive Disorder from Resting-State EEG Using Convolutional Neural Networks: A Pilot Study Cover

Classifying Obsessive-Compulsive Disorder from Resting-State EEG Using Convolutional Neural Networks: A Pilot Study

Open Access
|Jan 2026

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems [White paper]. Google Research. https://download.tensorflow.org/paper/whitepaper2015.pdf
  2. Ablin, P., Cardoso, J.-F., & Gramfort, A. (2018). Faster independent component analysis by preconditioning with Hessian approximations. IEEE Transactions on Signal Processing, 66(15), 40404049. 10.1109/TSP.2018.2844203
  3. Abramowitz, J. S., & Deacon, B. J. (2006). Psychometric properties and construct validity of the Obsessive–Compulsive Inventory—Revised: Replication and extension with a clinical sample. Journal of Anxiety Disorders, 20(8), 10161035. 10.1016/j.janxdis.2006.03.001
  4. Abramowitz, J. S., Deacon, B. J., Olatunji, B. O., Wheaton, M. G., Berman, N. C., Losardo, D., Timpano, K. R., McGrath, P. B., Riemann, B. C., Adams, T., Björgvinsson, T., Storch, E. A., & Hale, L. R. (2010). Assessment of obsessive-compulsive symptom dimensions: Development and evaluation of the Dimensional Obsessive-Compulsive Scale. Psychological Assessment, 22(1), 180198. 10.1037/a0018260
  5. Baltrušaitis, T., Ahuja, C., & Morency, L.-P. (2019). Multimodal machine learning: A survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 423443. 10.1109/TPAMI.2018.2798607
  6. Bardhoshi, G., Duncan, K., & Erford, B. T. (2016). Psychometric meta-analysis of the English version of the Beck Anxiety Inventory. Journal of Counseling & Development, 94(3), 356373. 10.1002/jcad.12090
  7. Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893900. 10.1037/0022-006X.56.6.893
  8. Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (2012). Beck Anxiety Inventory. American Psychological Association. 10.1037/t02025-000
  9. Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck Depression Inventory–II. American Psychological Association. 10.1037/t00742-000
  10. Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561571. 10.1001/archpsyc.1961.01710120031004
  11. Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 11291159. 10.1162/neco.1995.7.6.1129
  12. Bera, S., Geem, Z. W., Cho, Y.-I., & Singh, P. K. (2025). A comparative study of machine learning and deep learning models for automatic Parkinson’s disease detection from electroencephalogram signals. Diagnostics, 15(6), Article 773. 10.3390/diagnostics15060773
  13. Breiman, L. (1996). Stacked regressions. Machine Learning, 24(1), 4964. 10.1007/BF00117832
  14. Bruin, W. B., Abe, Y., Alonso, P., Anticevic, A., Backhausen, L. L., Balachander, S., … van Wingen, G. A. (2023). The functional connectome in obsessive-compulsive disorder: Resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium. Molecular Psychiatry, 28(10), 43074319. 10.1038/s41380-023-02077-0
  15. Chapman, L. J., Chapman, J. P., & Miller, E. N. (1982). Reliabilities and intercorrelations of eight measures of proneness to psychosis. Journal of Consulting and Clinical Psychology, 50(2), 187195. 10.1037/0022-006X.50.2.187
  16. Chollet, F. (2015). Keras [Computer software]. https://keras.io
  17. Cisotto, G., Zanga, A., Chlebus, J., Zoppis, I., Manzoni, S., & Markowska-Kaczmar, U. (2020). Comparison of attention-based deep learning models for EEG classification. arXiv. 10.21203/rs.3.rs-279263/v1
  18. Constable, R. T. (2023). Challenges in fMRI and its limitations. In S. H. Faro & F. B. Mohamed (Eds.), Functional neuroradiology (pp. 471486). Springer. 10.1007/978-3-031-10909-6_22
  19. Cui, J., Yuan, L., Wang, Z., Li, R., & Jiang, T. (2023). Towards best practice of interpreting deep learning models for EEG-based brain computer interfaces. Frontiers in Computational Neuroscience, 17, Article 1232925. 10.3389/fncom.2023.1232925
  20. Eckblad, M., & Chapman, L. J. (1983). Magical ideation as an indicator of schizotypy. Journal of Consulting and Clinical Psychology, 51(2), 215225. 10.1037/0022-006X.51.2.215
  21. Erguzel, T. T., Ozekes, S., Sayar, G. H., Tan, O., & Tarhan, N. (2015). A hybrid artificial intelligence method to classify trichotillomania and obsessive compulsive disorder. Neurocomputing, 161, 220228. 10.1016/j.neucom.2015.02.039
  22. Farhad, S., Metin, S. Z., Uyulan, Ç., Makouei, S. T. Z., Metin, B., Ergüzel, T. T., & Tarhan, N. (2024). Application of hybrid deep learning architectures for identification of individuals with obsessive compulsive disorder based on EEG data. Clinical EEG and Neuroscience, 55(5), 543552. 10.1177/15500594231222980
  23. Fonseca Pedrero, E., Paino Piñeiro, M. de las M., Lemos Giráldez, S., García Cueto, E., Villazón García, U., & Muñiz Fernández, J. (2009). Psychometric properties of the Perceptual Aberration Scale and the Magical Ideation Scale in Spanish college students. International Journal of Clinical and Health Psychology, 9(2), 319331.
  24. Goodman, W. K., Price, L. H., Rasmussen, S. A., Mazure, C., Fleischmann, R. L., Hill, C. L., Heninger, G. R., & Charney, D. S. (1989). The Yale-Brown Obsessive Compulsive Scale: I. Development, use, and reliability. Archives of General Psychiatry, 46(11), 10061011. 10.1001/archpsyc.1989.01810110048007
  25. Gramfort, A. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7, Article 267. 10.3389/fnins.2013.00267
  26. Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Parkkonen, L., & Hämäläinen, M. S. (2014). MNE software for processing MEG and EEG data. NeuroImage, 86, 446460. 10.1016/j.neuroimage.2013.10.027
  27. Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357362. 10.1038/s41586-020-2649-2
  28. Harris, P. A., Taylor, R., Minor, B. L., Elliott, V., Fernandez, M., O’Neal, L., McLeod, L., Delacqua, G., Delacqua, F., Kirby, J., & Duda, S. N. (2019). The REDCap consortium: Building an international community of software platform partners. Journal of Biomedical Informatics, 95, Article 103208. 10.1016/j.jbi.2019.103208
  29. Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics, 42(2), 377381. 10.1016/j.jbi.2008.08.010
  30. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 9095. 10.1109/MCSE.2007.55
  31. Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626634. 10.1109/72.761722
  32. Jiang, M., Zhao, Q., Li, J., Wang, F., He, T., Cheng, X., Yang, B. X., Ho, G. W. K., & Fu, G. (2024). A generic review of integrating artificial intelligence in cognitive behavioral therapy. arXiv. 10.48550/arXiv.2407.19422
  33. Kessler, R. C., Petukhova, M., Sampson, N. A., Zaslavsky, A. M., & Wittchen, H.-U. (2012). Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. International Journal of Methods in Psychiatric Research, 21(3), 169184. 10.1002/mpr.1359
  34. Kingdon, B. L., Egan, S. J., & Rees, C. S. (2012). The Illusory Beliefs Inventory: A new measure of magical thinking and its relationship with obsessive compulsive disorder. Behavioural and Cognitive Psychotherapy, 40(1), 3953. 10.1017/S1352465811000245
  35. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv. 10.48550/arXiv.1412.6980
  36. Klepl, D., Wu, M., & He, F. (2024). Graph neural network-based EEG classification: A survey. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 32, 493503. 10.1109/TNSRE.2024.3355750
  37. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25.
  38. Kuruvila, I., Muncke, J., Fischer, E., & Hoppe, U. (2021). Extracting the auditory attention in a dual-speaker scenario from EEG using a joint CNN-LSTM model. Frontiers in Physiology, 12, Article 700655. 10.3389/fphys.2021.700655
  39. Kwapil, T. R., Miller, M. B., Zinser, M. C., Chapman, J., & Chapman, L. J. (1997). Magical ideation and social anhedonia as predictors of psychosis proneness: A partial replication. Journal of Abnormal Psychology, 106(3), 491500. 10.1037/0021-843X.106.3.491
  40. Law, C., & Boisseau, C. L. (2019). Exposure and response prevention in the treatment of obsessive-compulsive disorder: Current perspectives. Psychology Research and Behavior Management, 12, 11671174. 10.2147/PRBM.S211117
  41. Lee, T.-W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11(2), 417441. 10.1162/089976699300016719
  42. Lopes, M., Cassani, R., & Falk, T. H. (2023). Using CNN saliency maps and EEG modulation spectra for improved and more interpretable machine learning-based Alzheimer’s disease diagnosis. Computational Intelligence and Neuroscience, 2023, Article 3198066. 10.1155/2023/3198066
  43. Martin, E. A., Becker, T. M., Cicero, D. C., Docherty, A. R., & Kerns, J. G. (2011). Differential associations between schizotypy facets and emotion traits. Psychiatry Research, 187(1–2), 9499. 10.1016/j.psychres.2010.12.007
  44. Mattera, E. F., Ching, T. H., Zaboski, B. A., & Kichuk, S. A. (2024). Suicidal obsessions or suicidal ideation? A case report and practical guide for differential assessment. Cognitive and Behavioral Practice, 31(2), 259271. 10.1016/j.cbpra.2022.09.002
  45. McKinney, W. (2010). Data structures for statistical computing in Python. In S. van der Walt & J. Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp. 5156). SciPy. https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf
  46. Mennes, M., Wouters, H., Vanrumste, B., Lagae, L., & Stiers, P. (2010). Validation of ICA as a tool to remove eye movement artifacts from EEG/ERP. Psychophysiology, 47(6), 11421150. 10.1111/j.1469-8986.2010.01015.x
  47. Metin, S. Z., Balli Altuglu, T., Metin, B., Erguzel, T. T., Yigit, S., Arıkan, M. K., & Tarhan, K. N. (2019). Use of EEG for predicting treatment response to transcranial magnetic stimulation in obsessive compulsive disorder. Clinical EEG and Neuroscience, 51(4), 246253. 10.1177/1550059419879569
  48. Mevlevioğlu, D., Tabirca, S., & Murphy, D. (2024). Real-time classification of anxiety in virtual reality therapy using biosensors and a convolutional neural network. Biosensors, 14(3), Article 131. 10.3390/bios14030131
  49. Naidu, G., Zuva, T., & Sibanda, E. M. (2023). A review of evaluation metrics in machine learning algorithms. In R. Silhavy & P. Silhavy (Eds.), Artificial intelligence application in networks and systems (pp. 1525). Springer. 10.1007/978-3-031-35314-7_2
  50. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 28252830. http://www.jmlr.org/papers/v12/pedregosa11a.html
  51. Pittenger, C. (2017). Obsessive-compulsive disorder: Phenomenology, pathophysiology, and treatment. Oxford University Press. 10.1093/med/9780190228163.001.0001
  52. Rahul, J., Sharma, D., Sharma, L. D., Nanda, U., & Sarkar, A. K. (2024). A systematic review of EEG based automated schizophrenia classification through machine learning and deep learning. Frontiers in Human Neuroscience, 18, Article 1347082. 10.3389/fnhum.2024.1347082
  53. Rance, M., Zhao, Z., Zaboski, B., Kichuk, S. A., Romaker, E., Koller, W. N., … Hampson, M. (2023). Neurofeedback for obsessive compulsive disorder: A randomized, double-blind trial. Psychiatry Research, 328, Article 115458. 10.1016/j.psychres.2023.115458
  54. Ren, G., Kumar, A., Mahmoud, S. S., & Fang, Q. (2024). A deep neural network and transfer learning combined method for cross-task classification of error-related potentials. Frontiers in Human Neuroscience, 18, Article 1394107. 10.3389/fnhum.2024.1394107
  55. Ruscio, A. M., Stein, D. J., Chiu, W. T., & Kessler, R. C. (2010). The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Molecular Psychiatry, 15(1), 5363. 10.1038/mp.2008.94
  56. Salomoni, G., Grassi, M., Mosini, P., Riva, P., Cavedini, P., & Bellodi, L. (2009). Artificial neural network model for the prediction of obsessive-compulsive disorder treatment response. Journal of Clinical Psychopharmacology, 29(4), 343349. 10.1097/JCP.0b013e3181aba68f
  57. Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., & Ball, T. (2017). Deep learning with convolutional neural networks for EEG decoding and visualization. Human Brain Mapping, 38(11), 53915420. 10.1002/hbm.23730
  58. Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., Hergueta, T., Baker, R., & Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(Suppl. 20), 2233.
  59. Stein, D. J., Costa, D. L. C., Lochner, C., Miguel, E. C., Reddy, Y. C. J., Shavitt, R. G., van den Heuvel, O. A., & Simpson, H. B. (2019). Obsessive–compulsive disorder. Nature Reviews Disease Primers, 5, Article 52. 10.1038/s41572-019-0102-3
  60. Tamburro, G., Croce, P., Zappasodi, F., & Comani, S. (2021). Is brain dynamics preserved in the EEG after automated artifact removal? A validation of the fingerprint method and the automatic removal of cardiac interference approach based on microstate analysis. Frontiers in Neuroscience, 14, Article 577160. 10.3389/fnins.2020.577160
  61. Tolin, D. F., Gilliam, C., Wootton, B. M., Bowe, W., Bragdon, L. B., Davis, E., Hannan, S. E., Steinman, S. A., Worden, B., & Hallion, L. S. (2018). Psychometric properties of a structured diagnostic interview for DSM-5 anxiety, mood, and obsessive-compulsive and related disorders. Assessment, 25(1), 313. 10.1177/1073191116638410
  62. Urbach, T. P., & Kutas, M. (2006). Interpreting event-related brain potential (ERP) distributions: Implications of baseline potentials and variability with application to amplitude normalization by vector scaling. Biological Psychology, 72(3), 333343. 10.1016/j.biopsycho.2005.11.012
  63. Van Rossum, G., & Drake, F. L. (2009). Python 2.6 reference manual. Python Software Foundation.
  64. Wang, Y.-P., & Gorenstein, C. (2013). Psychometric properties of the Beck Depression Inventory-II: A comprehensive review. Brazilian Journal of Psychiatry, 35(4), 416431. 10.1590/1516-4446-2012-1048
  65. Waskom, M. L. (2021). seaborn: Statistical data visualization. Journal of Open Source Software, 6(60), Article 3021. 10.21105/joss.03021
  66. Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241259. 10.1016/S0893-6080(05)80023-1
  67. Xu, B., Zhang, L., Song, A., Wu, C., Li, W., Zhang, D., Xu, G., Li, H., & Zeng, H. (2018). Wavelet transform time-frequency image and convolutional network-based motor imagery EEG classification. IEEE Access, 7, 60846093. 10.1109/ACCESS.2018.2889093
  68. Yao, X., Li, T., Ding, P., Wang, F., Zhao, L., Gong, A., Nan, W., & Fu, Y. (2024). Emotion classification based on Transformer and CNN for EEG spatial–temporal feature learning. Brain Sciences, 14(3), Article 268. 10.3390/brainsci14030268
  69. Zaboski, B. A., & Bednarek, L. (2025). Precision psychiatry for obsessive-compulsive disorder: Clinical applications of deep learning architectures. Journal of Clinical Medicine, 14(7), Article 2442. 10.3390/jcm14072442
  70. Zaboski, B. A., Bednarek, L., Ayoub, K., & Pittenger, C. (2025). Deep learning in obsessive-compulsive disorder: A narrative review. Frontiers in Psychiatry, 16, Article 1581297. 10.3389/fpsyt.2025.1581297
  71. Zaboski, B. A., Stern, E. F., Skosnik, P. D., & Pittenger, C. (2021). Electroencephalographic correlates and predictors of treatment outcome in OCD: A brief narrative review. Frontiers in Psychiatry, 12, Article 703398. 10.3389/fpsyt.2021.703398
  72. Zaboski, B. A., Wilens, A., McNamara, J. P., & Muller, G. N. (2024). Predicting OCD severity from religiosity and personality: A machine learning and neural network approach. Journal of Mood & Anxiety Disorders, 8, Article 100089. 10.1016/j.xjmad.2024.100089
DOI: https://doi.org/10.5334/cpsy.149 | Journal eISSN: 2379-6227
Language: English
Submitted on: May 15, 2025
|
Accepted on: Dec 4, 2025
|
Published on: Jan 16, 2026
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2026 Brian Zaboski, Sarah Fineberg, Patrick Skosnik, Stephen Kichuk, Madison Fitzpatrick, Christopher Pittenger, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.

Volume 10 (2026): Issue 1