References
- Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., … Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems [White paper]. Google Research.
https://download.tensorflow.org/paper/whitepaper2015.pdf - Ablin, P., Cardoso, J.-F., & Gramfort, A. (2018). Faster independent component analysis by preconditioning with Hessian approximations. IEEE Transactions on Signal Processing, 66(15), 4040–4049. 10.1109/TSP.2018.2844203
- Abramowitz, J. S., & Deacon, B. J. (2006). Psychometric properties and construct validity of the Obsessive–Compulsive Inventory—Revised: Replication and extension with a clinical sample. Journal of Anxiety Disorders, 20(8), 1016–1035. 10.1016/j.janxdis.2006.03.001
- Abramowitz, J. S., Deacon, B. J., Olatunji, B. O., Wheaton, M. G., Berman, N. C., Losardo, D., Timpano, K. R., McGrath, P. B., Riemann, B. C., Adams, T., Björgvinsson, T., Storch, E. A., & Hale, L. R. (2010). Assessment of obsessive-compulsive symptom dimensions: Development and evaluation of the Dimensional Obsessive-Compulsive Scale. Psychological Assessment, 22(1), 180–198. 10.1037/a0018260
- Baltrušaitis, T., Ahuja, C., & Morency, L.-P. (2019). Multimodal machine learning: A survey and taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(2), 423–443. 10.1109/TPAMI.2018.2798607
- Bardhoshi, G., Duncan, K., & Erford, B. T. (2016). Psychometric meta-analysis of the English version of the Beck Anxiety Inventory. Journal of Counseling & Development, 94(3), 356–373. 10.1002/jcad.12090
- Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology, 56(6), 893–900. 10.1037/0022-006X.56.6.893
- Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (2012). Beck Anxiety Inventory. American Psychological Association. 10.1037/t02025-000
- Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck Depression Inventory–II. American Psychological Association. 10.1037/t00742-000
- Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561–571. 10.1001/archpsyc.1961.01710120031004
- Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159. 10.1162/neco.1995.7.6.1129
- Bera, S., Geem, Z. W., Cho, Y.-I., & Singh, P. K. (2025). A comparative study of machine learning and deep learning models for automatic Parkinson’s disease detection from electroencephalogram signals. Diagnostics, 15(6), Article
773 . 10.3390/diagnostics15060773 - Breiman, L. (1996). Stacked regressions. Machine Learning, 24(1), 49–64. 10.1007/BF00117832
- Bruin, W. B., Abe, Y., Alonso, P., Anticevic, A., Backhausen, L. L., Balachander, S., … van Wingen, G. A. (2023). The functional connectome in obsessive-compulsive disorder: Resting-state mega-analysis and machine learning classification for the ENIGMA-OCD consortium. Molecular Psychiatry, 28(10), 4307–4319. 10.1038/s41380-023-02077-0
- Chapman, L. J., Chapman, J. P., & Miller, E. N. (1982). Reliabilities and intercorrelations of eight measures of proneness to psychosis. Journal of Consulting and Clinical Psychology, 50(2), 187–195. 10.1037/0022-006X.50.2.187
- Chollet, F. (2015). Keras [Computer software].
https://keras.io - Cisotto, G., Zanga, A., Chlebus, J., Zoppis, I., Manzoni, S., & Markowska-Kaczmar, U. (2020). Comparison of attention-based deep learning models for EEG classification. arXiv. 10.21203/rs.3.rs-279263/v1
- Constable, R. T. (2023).
Challenges in fMRI and its limitations . In S. H. Faro & F. B. Mohamed (Eds.), Functional neuroradiology (pp. 471–486). Springer. 10.1007/978-3-031-10909-6_22 - Cui, J., Yuan, L., Wang, Z., Li, R., & Jiang, T. (2023). Towards best practice of interpreting deep learning models for EEG-based brain computer interfaces. Frontiers in Computational Neuroscience, 17, Article
1232925 . 10.3389/fncom.2023.1232925 - Eckblad, M., & Chapman, L. J. (1983). Magical ideation as an indicator of schizotypy. Journal of Consulting and Clinical Psychology, 51(2), 215–225. 10.1037/0022-006X.51.2.215
- Erguzel, T. T., Ozekes, S., Sayar, G. H., Tan, O., & Tarhan, N. (2015). A hybrid artificial intelligence method to classify trichotillomania and obsessive compulsive disorder. Neurocomputing, 161, 220–228. 10.1016/j.neucom.2015.02.039
- Farhad, S., Metin, S. Z., Uyulan, Ç., Makouei, S. T. Z., Metin, B., Ergüzel, T. T., & Tarhan, N. (2024). Application of hybrid deep learning architectures for identification of individuals with obsessive compulsive disorder based on EEG data. Clinical EEG and Neuroscience, 55(5), 543–552. 10.1177/15500594231222980
- Fonseca Pedrero, E., Paino Piñeiro, M. de las M., Lemos Giráldez, S., García Cueto, E., Villazón García, U., & Muñiz Fernández, J. (2009). Psychometric properties of the Perceptual Aberration Scale and the Magical Ideation Scale in Spanish college students. International Journal of Clinical and Health Psychology, 9(2), 319–331.
- Goodman, W. K., Price, L. H., Rasmussen, S. A., Mazure, C., Fleischmann, R. L., Hill, C. L., Heninger, G. R., & Charney, D. S. (1989). The Yale-Brown Obsessive Compulsive Scale: I. Development, use, and reliability. Archives of General Psychiatry, 46(11), 1006–1011. 10.1001/archpsyc.1989.01810110048007
- Gramfort, A. (2013). MEG and EEG data analysis with MNE-Python. Frontiers in Neuroscience, 7, Article
267 . 10.3389/fnins.2013.00267 - Gramfort, A., Luessi, M., Larson, E., Engemann, D. A., Strohmeier, D., Brodbeck, C., Parkkonen, L., & Hämäläinen, M. S. (2014). MNE software for processing MEG and EEG data. NeuroImage, 86, 446–460. 10.1016/j.neuroimage.2013.10.027
- Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. 10.1038/s41586-020-2649-2
- Harris, P. A., Taylor, R., Minor, B. L., Elliott, V., Fernandez, M., O’Neal, L., McLeod, L., Delacqua, G., Delacqua, F., Kirby, J., & Duda, S. N. (2019). The REDCap consortium: Building an international community of software platform partners. Journal of Biomedical Informatics, 95, Article
103208 . 10.1016/j.jbi.2019.103208 - Harris, P. A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., & Conde, J. G. (2009). Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. Journal of Biomedical Informatics, 42(2), 377–381. 10.1016/j.jbi.2008.08.010
- Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. 10.1109/MCSE.2007.55
- Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634. 10.1109/72.761722
- Jiang, M., Zhao, Q., Li, J., Wang, F., He, T., Cheng, X., Yang, B. X., Ho, G. W. K., & Fu, G. (2024). A generic review of integrating artificial intelligence in cognitive behavioral therapy. arXiv. 10.48550/arXiv.2407.19422
- Kessler, R. C., Petukhova, M., Sampson, N. A., Zaslavsky, A. M., & Wittchen, H.-U. (2012). Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. International Journal of Methods in Psychiatric Research, 21(3), 169–184. 10.1002/mpr.1359
- Kingdon, B. L., Egan, S. J., & Rees, C. S. (2012). The Illusory Beliefs Inventory: A new measure of magical thinking and its relationship with obsessive compulsive disorder. Behavioural and Cognitive Psychotherapy, 40(1), 39–53. 10.1017/S1352465811000245
- Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv. 10.48550/arXiv.1412.6980
- Klepl, D., Wu, M., & He, F. (2024). Graph neural network-based EEG classification: A survey. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 32, 493–503. 10.1109/TNSRE.2024.3355750
- Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25.
- Kuruvila, I., Muncke, J., Fischer, E., & Hoppe, U. (2021). Extracting the auditory attention in a dual-speaker scenario from EEG using a joint CNN-LSTM model. Frontiers in Physiology, 12, Article
700655 . 10.3389/fphys.2021.700655 - Kwapil, T. R., Miller, M. B., Zinser, M. C., Chapman, J., & Chapman, L. J. (1997). Magical ideation and social anhedonia as predictors of psychosis proneness: A partial replication. Journal of Abnormal Psychology, 106(3), 491–500. 10.1037/0021-843X.106.3.491
- Law, C., & Boisseau, C. L. (2019). Exposure and response prevention in the treatment of obsessive-compulsive disorder: Current perspectives. Psychology Research and Behavior Management, 12, 1167–1174. 10.2147/PRBM.S211117
- Lee, T.-W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11(2), 417–441. 10.1162/089976699300016719
- Lopes, M., Cassani, R., & Falk, T. H. (2023). Using CNN saliency maps and EEG modulation spectra for improved and more interpretable machine learning-based Alzheimer’s disease diagnosis. Computational Intelligence and Neuroscience, 2023, Article
3198066 . 10.1155/2023/3198066 - Martin, E. A., Becker, T. M., Cicero, D. C., Docherty, A. R., & Kerns, J. G. (2011). Differential associations between schizotypy facets and emotion traits. Psychiatry Research, 187(1–2), 94–99. 10.1016/j.psychres.2010.12.007
- Mattera, E. F., Ching, T. H., Zaboski, B. A., & Kichuk, S. A. (2024). Suicidal obsessions or suicidal ideation? A case report and practical guide for differential assessment. Cognitive and Behavioral Practice, 31(2), 259–271. 10.1016/j.cbpra.2022.09.002
- McKinney, W. (2010). Data structures for statistical computing in Python. In S. van der Walt & J. Millman (Eds.), Proceedings of the 9th Python in Science Conference (pp. 51–56).
SciPy .https://conference.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf - Mennes, M., Wouters, H., Vanrumste, B., Lagae, L., & Stiers, P. (2010). Validation of ICA as a tool to remove eye movement artifacts from EEG/ERP. Psychophysiology, 47(6), 1142–1150. 10.1111/j.1469-8986.2010.01015.x
- Metin, S. Z., Balli Altuglu, T., Metin, B., Erguzel, T. T., Yigit, S., Arıkan, M. K., & Tarhan, K. N. (2019). Use of EEG for predicting treatment response to transcranial magnetic stimulation in obsessive compulsive disorder. Clinical EEG and Neuroscience, 51(4), 246–253. 10.1177/1550059419879569
- Mevlevioğlu, D., Tabirca, S., & Murphy, D. (2024). Real-time classification of anxiety in virtual reality therapy using biosensors and a convolutional neural network. Biosensors, 14(3), Article
131 . 10.3390/bios14030131 - Naidu, G., Zuva, T., & Sibanda, E. M. (2023).
A review of evaluation metrics in machine learning algorithms . In R. Silhavy & P. Silhavy (Eds.), Artificial intelligence application in networks and systems (pp. 15–25). Springer. 10.1007/978-3-031-35314-7_2 - Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825–2830.
http://www.jmlr.org/papers/v12/pedregosa11a.html - Pittenger, C. (2017). Obsessive-compulsive disorder: Phenomenology, pathophysiology, and treatment. Oxford University Press. 10.1093/med/9780190228163.001.0001
- Rahul, J., Sharma, D., Sharma, L. D., Nanda, U., & Sarkar, A. K. (2024). A systematic review of EEG based automated schizophrenia classification through machine learning and deep learning. Frontiers in Human Neuroscience, 18, Article
1347082 . 10.3389/fnhum.2024.1347082 - Rance, M., Zhao, Z., Zaboski, B., Kichuk, S. A., Romaker, E., Koller, W. N., … Hampson, M. (2023). Neurofeedback for obsessive compulsive disorder: A randomized, double-blind trial. Psychiatry Research, 328, Article
115458 . 10.1016/j.psychres.2023.115458 - Ren, G., Kumar, A., Mahmoud, S. S., & Fang, Q. (2024). A deep neural network and transfer learning combined method for cross-task classification of error-related potentials. Frontiers in Human Neuroscience, 18, Article
1394107 . 10.3389/fnhum.2024.1394107 - Ruscio, A. M., Stein, D. J., Chiu, W. T., & Kessler, R. C. (2010). The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Molecular Psychiatry, 15(1), 53–63. 10.1038/mp.2008.94
- Salomoni, G., Grassi, M., Mosini, P., Riva, P., Cavedini, P., & Bellodi, L. (2009). Artificial neural network model for the prediction of obsessive-compulsive disorder treatment response. Journal of Clinical Psychopharmacology, 29(4), 343–349. 10.1097/JCP.0b013e3181aba68f
- Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., & Ball, T. (2017). Deep learning with convolutional neural networks for EEG decoding and visualization. Human Brain Mapping, 38(11), 5391–5420. 10.1002/hbm.23730
- Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., Hergueta, T., Baker, R., & Dunbar, G. C. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59(Suppl. 20), 22–33.
- Stein, D. J., Costa, D. L. C., Lochner, C., Miguel, E. C., Reddy, Y. C. J., Shavitt, R. G., van den Heuvel, O. A., & Simpson, H. B. (2019). Obsessive–compulsive disorder. Nature Reviews Disease Primers, 5, Article
52 . 10.1038/s41572-019-0102-3 - Tamburro, G., Croce, P., Zappasodi, F., & Comani, S. (2021). Is brain dynamics preserved in the EEG after automated artifact removal? A validation of the fingerprint method and the automatic removal of cardiac interference approach based on microstate analysis. Frontiers in Neuroscience, 14, Article
577160 . 10.3389/fnins.2020.577160 - Tolin, D. F., Gilliam, C., Wootton, B. M., Bowe, W., Bragdon, L. B., Davis, E., Hannan, S. E., Steinman, S. A., Worden, B., & Hallion, L. S. (2018). Psychometric properties of a structured diagnostic interview for DSM-5 anxiety, mood, and obsessive-compulsive and related disorders. Assessment, 25(1), 3–13. 10.1177/1073191116638410
- Urbach, T. P., & Kutas, M. (2006). Interpreting event-related brain potential (ERP) distributions: Implications of baseline potentials and variability with application to amplitude normalization by vector scaling. Biological Psychology, 72(3), 333–343. 10.1016/j.biopsycho.2005.11.012
- Van Rossum, G., & Drake, F. L. (2009). Python 2.6 reference manual. Python Software Foundation.
- Wang, Y.-P., & Gorenstein, C. (2013). Psychometric properties of the Beck Depression Inventory-II: A comprehensive review. Brazilian Journal of Psychiatry, 35(4), 416–431. 10.1590/1516-4446-2012-1048
- Waskom, M. L. (2021). seaborn: Statistical data visualization. Journal of Open Source Software, 6(60), Article
3021 . 10.21105/joss.03021 - Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5(2), 241–259. 10.1016/S0893-6080(05)80023-1
- Xu, B., Zhang, L., Song, A., Wu, C., Li, W., Zhang, D., Xu, G., Li, H., & Zeng, H. (2018). Wavelet transform time-frequency image and convolutional network-based motor imagery EEG classification. IEEE Access, 7, 6084–6093. 10.1109/ACCESS.2018.2889093
- Yao, X., Li, T., Ding, P., Wang, F., Zhao, L., Gong, A., Nan, W., & Fu, Y. (2024). Emotion classification based on Transformer and CNN for EEG spatial–temporal feature learning. Brain Sciences, 14(3), Article
268 . 10.3390/brainsci14030268 - Zaboski, B. A., & Bednarek, L. (2025). Precision psychiatry for obsessive-compulsive disorder: Clinical applications of deep learning architectures. Journal of Clinical Medicine, 14(7), Article
2442 . 10.3390/jcm14072442 - Zaboski, B. A., Bednarek, L., Ayoub, K., & Pittenger, C. (2025). Deep learning in obsessive-compulsive disorder: A narrative review. Frontiers in Psychiatry, 16, Article
1581297 . 10.3389/fpsyt.2025.1581297 - Zaboski, B. A., Stern, E. F., Skosnik, P. D., & Pittenger, C. (2021). Electroencephalographic correlates and predictors of treatment outcome in OCD: A brief narrative review. Frontiers in Psychiatry, 12, Article
703398 . 10.3389/fpsyt.2021.703398 - Zaboski, B. A., Wilens, A., McNamara, J. P., & Muller, G. N. (2024). Predicting OCD severity from religiosity and personality: A machine learning and neural network approach. Journal of Mood & Anxiety Disorders, 8, Article
100089 . 10.1016/j.xjmad.2024.100089
