References
- Adams, R. A., Huys, Q. J., & Roiser, J. P. (2016). Computational psychiatry: towards a mathematically informed understanding of mental illness. Journal of Neurology, Neurosurgery & Psychiatry, 87(1), 53–63.
- Admon, R., & Pizzagalli, D. A. (2015). Dysfunctional reward processing in depression. Current opinion in psychology, 4, 114–118 . 10.1016/j.copsyc.2014.12.011
- Brown, V. M., Zhu, L., Solway, A., Wang, J. M., McCurry, K. L., King-Casas, B., & Chiu, P. H. (2021). Reinforcement Learning Disruptions in Individuals With Depression and Sensitivity to Symptom Change Following Cognitive Behavioral Therapy. JAMA psychiatry, 78(10), 1113–1122. 10.1001/jamapsychiatry.2021.1844
- Brown, W. (1910). Some experimental results in the correlation of mental abilities. British Journal of Psychology, 3(3), 296–322. 10.1111/j.2044-8295.1910.tb00207.x
- Diekhof, E. K., Falkai, P., & Gruber, O. (2008). Functional neuroimaging of reward processing and decision-making: a review of aberrant motivational and affective processing in addiction and mood disorders. Brain research reviews, 59(1), 164–184. 10.1016/j.brainresrev.2008.07.004
- Dillon, D. G., Belleau, E. L., Origlio, J., McKee, M., Jahan, A., Meyer, A., Souther, M. K., Brunner, D., Kuhn, M., Ang, Y. S., Cusin, C., Fava, M., & Pizzagalli, D. A. (2024).
Using Drift Diffusion and RL Models to Disentangle Effects of Depression On Decision-Making vs. Learning in the Probabilistic Reward Task . Computational psychiatry (Cambridge, Mass.), 8(1), 46–69. 10.5334/cpsy.108 - Dillon, D. G., Lazarov, A., Dolan, S., Bar-Haim, Y., Pizzagalli, D. A., & Schneier, F. R. (2022). Fast evidence accumulation in social anxiety disorder enhances decision making in a probabilistic reward task. Emotion, 22(1), 1–18. 10.1037/emo0001053
- Dombrovski, A. Y., Clark, L., Siegle, G. J., Butters, M. A., Ichikawa, N., Sahakian, B. J., & Szanto, K. (2010). Reward/Punishment reversal learning in older suicide attempters. The American journal of psychiatry, 167(6), 699–707. 10.1176/appi.ajp.2009.09030407
- Fassett-Carman, A. N., Moser, A. D., Ruzic, L., Neilson, C., Jones, J., Barnes-Horowitz, S., Schneck, C. D., & Kaiser, R. H. (2023). Amygdala and nucleus accumbens activation during reward anticipation moderates the association between life stressor frequency and depressive symptoms. Journal of Affective Disorders, 330, 309–318.
https://www.sciencedirect.com/science/article/pii/S0165032723003208 - First, M. B., Williams, J. B., Karg, R. S., & Spitzer, R. L. (2015). Structured clinical interview for DSM-5—Research version (SCID-5 for DSM-5, research version; SCID-5-RV). American Psychiatric Association (pp. 1–94).
- Forbes, E. E., & Dahl, R. E. (2012). Research Review: altered reward function in adolescent depression: what, when and how? Journal of Child Psychology and Psychiatry, 53(1), 3–15. 10.1111/j.1469-7610.2011.02477.x
- Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical science, 457–472. 10.1214/ss/1177011136
- Goldstein-Piekarski, A. N., Ball, T. M., Samara, Z., Staveland, B. R., Keller, A. S., Fleming, S. L., Grisanzio, K. A., Holt-Gosselin, B., Stetz, P., Ma, J., & Williams, L. M. (2022). Mapping Neural Circuit Biotypes to Symptoms and Behavioral Dimensions of Depression and Anxiety. Biological psychiatry, 91(6), 561–571. 10.1016/j.biopsych.2021.06.024
- Grob, S., Pizzagalli, D. A., Dutra, S. J., Stern, J., Mörgeli, H., Milos, G., Schnyder, U., & Hasler, G. (2012). Dopamine-Related Deficit in Reward Learning After Catecholamine Depletion in Unmedicated, Remitted Subjects with Bulimia Nervosa. Neuropsychopharmacology (New York, N.Y.), 37(8), 1945–1952. 10.1038/npp.2012.41
- Halahakoon, D. C., Kieslich, K., O’Driscoll, C., Nair, A., Lewis, G., & Roiser, J. P. (2020). Reward-Processing Behavior in Depressed Participants Relative to Healthy Volunteers: A Systematic Review and Meta-analysis. JAMA psychiatry, 77(12), 1286–1295. 10.1001/jamapsychiatry.2020.2139
- Hauser, T. U., Will, G. J., Dubois, M., & Dolan, R. J. (2019). Annual research review: developmental computational psychiatry. Journal of Child psychology and Psychiatry, 60(4), 412–426. 10.1111/jcpp.12964
- Hobbs, C., Sui, J., Kessler, D., Munafò, M. R., & Button, K. S. (2023). Self-processing in relation to emotion and reward processing in depression. Psychological medicine, 53(5), 1924–1936. 10.1017/S0033291721003597
- Huys, Q. J., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature neuroscience, 19(3), 404–413. 10.1038/nn.4238
- Huys, Q. J., Pizzagalli, D. A., Bogdan, R., & Dayan, P. (2013). Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biology of mood & anxiety disorders, 3(1), 1–16. 10.1186/2045-5380-3-12
- Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. The American journal of psychiatry, 167(7), 748–751. 10.1176/appi.ajp.2010.09091379
- Kaiser, R. H., Moser, A. D., Neilson, C., Peterson, E. C., Jones, J., Hough, C. M., Rosenberg, B. M., Sandman, C. F., Schneck, C. D., Miklowitz, D. J., & Friedman, N. P. (2022). Mood Symptom Dimensions and Developmental Differences in Neurocognition in Adolescence. Clinical Psychological Science, 11(2), 308–325. 10.1177/21677026221111389
- Kaiser, R. H., Treadway, M. T., Wooten, D. W., Kumar, P., Goer, F., Murray, L., Beltzer, M., Pechtel, P., Whitton, A., Cohen, A. L., Alpert, N. M., El Fakhri, G., Normandin, M. D., & Pizzagalli, D. A. (2018).
Frontostriatal and Dopamine Markers of Individual Differences in Reinforcement Learning: A Multi-modal Investigation . Cerebral cortex (New York, N.Y.: 1991), 28(12), 4281–4290. 10.1093/cercor/bhx281 - Kangas, B. D., Der-Avakian, A., & Pizzagalli, D. A. (2022).
Probabilistic reinforcement learning and anhedonia . In Anhedonia: Preclinical, Translational, and Clinical Integration (pp. 355–377). Springer International Publishing. 10.1007/7854_2022_349 - Keren, H., O’Callaghan, G., Vidal-Ribas, P., Buzzell, G. A., Brotman, M. A., Leibenluft, E., Pan, P. M., Meffert, L., Kaiser, A., Wolke, S., Pine, D. S., & Stringaris, A. (2018). Reward Processing in Depression: A Conceptual and Meta-Analytic Review Across fMRI and EEG Studies. The American journal of psychiatry, 175(11), 1111–1120. 10.1176/appi.ajp.2018.17101124
- Lawlor, V. M., Webb, C. A., Wiecki, T. V., Frank, M. J., Trivedi, M., Pizzagalli, D. A., & Dillon, D. G. (2020). Dissecting the impact of depression on decision-making. Psychological medicine, 50(10), 1613–1622. 10.1017/S0033291719001570
- Letkiewicz, A. M., Cochran, A. L., Mittal, V. A., Walther, S., & Shankman, S. A. (2022). Reward-based reinforcement learning is altered among individuals with a history of major depressive disorder and psychomotor retardation symptoms. Journal of psychiatric research, 152, 175–181. 10.1016/j.jpsychires.2022.06.032
- Luking, K. R., Pagliaccio, D., Luby, J. L., & Barch, D. M. (2016). Reward processing and risk for depression across development. Trends in cognitive sciences, 20(6), 456–468. 10.1016/j.tics.2016.04.002
- Morris, B. H., Bylsma, L. M., Yaroslavsky, I., Kovacs, M., & Rottenberg, J. (2015). Reward learning in pediatric depression and anxiety: preliminary findings in a high-risk sample. Depression and anxiety, 32(5), 373–381. 10.1002/da.22358
- Pedersen, M. L., & Frank, M. J. (2020). Simultaneous hierarchical bayesian parameter estimation for reinforcement learning and drift diffusion models: a tutorial and links to neural data. Computational Brain & Behavior, 3(4), 458–471. 10.1007/s42113-020-00084-w
- Pedersen, M. L., Frank, M. J., & Biele, G. (2017). The drift diffusion model as the choice rule in reinforcement learning. Psychonomic bulletin & review, 24(4), 1234–1251. 10.3758/s13423-016-1199-y
- Peterson, E. C., Rosenberg, B. M., Hough, C. M., Sandman, C. F., Neilson, C., Miklowitz, D. J., & Kaiser, R. H. (2021). Behavioral mediators of stress-related mood symptoms in adolescence & young adulthood. Journal of Affective Disorders, 294, 94–102. 10.1016/j.jad.2021.06.079
- Peterson, E. C., Snyder, H. R., Neilson, C., Rosenberg, B. M., Hough, C. M., Sandman, C. F., Ohanian, L., Garcia, S., Kotz, J., Finegan, J., Ryan, C. A., Gyimah, A., Sileo, S., Miklowitz, D. J., Friedman, N. P., & Kaiser, R. H. (2022). General and Specific Dimensions of Mood Symptoms Are Associated With Impairments in Common Executive Function in Adolescence and Young Adulthood. Frontiers in human neuroscience, 16,
838645 . 10.3389/fnhum.2022.838645 - Pike, A. C., & Robinson, O. J. (2022). Reinforcement learning in patients with mood and anxiety disorders vs control individuals: A systematic review and meta-analysis. JAMA psychiatry, 79(4), 313–322. 10.1001/jamapsychiatry.2022.0051
- Pitliya, R. J., Nelson, B. D., Hajcak, G., & Jin, J. (2022). Drift-Diffusion Model Reveals Impaired Reward-Based Perceptual Decision-Making Processes Associated with Depression in Late Childhood and Early Adolescent Girls. Research on Child and Adolescent Psychopathology, 50(11), 1515–1528. 10.1007/s10802-022-00936-y
- Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G., & Fava, M. (2008). Reduced hedonic capacity in major depressive disorder: evidence from a probabilistic reward task. Journal of psychiatric research, 43(1), 76–87. 10.1016/j.jpsychires.2008.03.001
- Pizzagalli, D. A., Jahn, A. L., & O’Shea, J. P. (2005). Toward an objective characterization of an anhedonic phenotype: A signal-detection approach. Biological Psychiatry, 57(4), 319–327. 10.1016/j.biopsych.2004.11.026
- Ratcliff, R., & McKoon, G. (2018). Modeling numerosity representation with an integrated diffusion model. Psychological review, 125(2),
183 . 10.1037/rev0000085 - Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological science, 9(5), 347–356. 10.1111/1467-9280.00067
- Rescorla, R. A., & Wagner, A. R. (1972).
A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement . In A. H. Black & W. K. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64–99). Appleton-Century-Crofts. - Rupprechter, S., Stankevicius, A., Huys, Q. J., Steele, J. D., & Seriès, P. (2018). Major depression impairs the use of reward values for decision-making. Scientific reports, 8(1), 1–8. 10.1038/s41598-018-31730-w
- Safra, L., Chevallier, C., & Palminteri, S. (2019). Depressive symptoms are associated with blunted reward learning in social contexts. PLoS computational biology, 15(7),
e1007224 . 10.1371/journal.pcbi.1007224 - Serretti, A. (2022). Clinical Utility of Fluid Biomarker in Depressive Disorder. Clinical psychopharmacology and neuroscience: the official scientific journal of the Korean College of Neuropsychopharmacology, 20(4), 585–591. 10.9758/cpn.2022.20.4.585
- Shen, L., Hu, Y. X., Lv, Q. Y., Yi, Z. H., Gong, J. B., & Yan, C. (2024). Using hierarchical drift diffusion models to elucidate computational mechanisms of reduced reward sensitivity in adolescent major depressive disorder. BMC Psychiatry, 24,
933 . 10.1186/s12888-024-06353-3 - Spearman, C. C. (1910). Correlation calculated from faulty data. British Journal of Psychology, 3(3), 271–295. 10.1111/j.2044-8295.1910.tb00206.x
- Sripada, C., & Weigard, A. (2021). Impaired evidence accumulation as a transdiagnostic vulnerability factor in psychopathology. Frontiers in psychiatry, 12,
627179 . 10.3389/fpsyt.2021.627179 - Stan Development Team. (2022). “RStan: the R interface to Stan.” R package version 2.21.7.
https://mc-stan.org/ . - Story, T. J., Potter, G. G., Attix, D. K., Welsh-Bohmer, K. A., & Steffens, D. C. (2008). Neurocognitive Correlates of Response to Treatment in Late-Life Depression. The American Journal of Geriatric Psychiatry, 16(9), 752–759. 10.1097/JGP.0b013e31817e739a
- Treadway, M. T., & Zald, D. H. (2013). Parsing anhedonia: translational models of reward-processing deficits in psychopathology. Current directions in psychological science, 22(3), 244–249. 10.1177/0963721412474460
- Tyrrell, J., Mulugeta, A., Wood, A. R., Zhou, A., Beaumont, R. N., Tuke, M. A., Jones, S. E., Ruth, K. S., Yaghootkar, H., Sharp, S., Thompson, W. D., Ji, Y., Harrison, J., Freathy, R. M., Murray, A., Weedon, M. N., Lewis, C., Frayling, T. M., & Hyppönen, E. (2019). Using genetics to understand the causal influence of higher BMI on depression. International journal of epidemiology, 48(3), 834–848. 10.1093/ije/dyy223
- Vrieze, E., Pizzagalli, D. A., Demyttenaere, K., Hompes, T., Sienaert, P., de Boer, P., Schmidt, M., & Claes, S. (2013). Reduced Reward Learning Predicts Outcome in Major Depressive Disorder. Biological Psychiatry, 73(7), 639–645. 10.1016/j.biopsych.2012.10.014
- Wabersich, D., & Vandekerckhove, J. (2014). The RWiener package: An R package providing distribution functions for the Wiener diffusion model.
- Walsh, A. E. L., Browning, M., Drevets, W. C., Furey, M., & Harmer, C. J. (2018). Dissociable temporal effects of bupropion on behavioural measures of emotional and reward processing in depression. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 373(1742),
20170030 . 10.1098/rstb.2017.0030 - Watson, D., Clark, L. A., Weber, K., Assenheimer, J. S., Strauss, M. E., & McCormick, R. A. (1995b). Testing a tripartite model: II. Exploring the symptom structure of anxiety and depression in student, adult, and patient samples. J. Abnorm. Psychol. 104(1), 15–25. 10.1037//0021-843x.104.1.15
- Watson, D., Weber, K., Assenheimer, J. S., Clark, L. A., Strauss, M. E., & McCormick, R. A. (1995a). Testing a tripartite model: I. Evaluating the convergent and discriminant validity of anxiety and depression symptom scales. J. Abnorm. Psychol. 104(1), 3–14. 10.1037//0021-843x.104.1.3
- White, C. N., & Poldrack, R. A. (2014). Decomposing bias in different types of simple decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(2), 385–398. 10.1037/a0034851
- Whitton, A. E., Reinen, J. M., Slifstein, M., Ang, Y.-S., McGrath, P. J., Iosifescu, D. V., Abi-Dargham, A., Pizzagalli, D. A., & Schneier, F. R. (2020). Baseline reward processing and ventrostriatal dopamine function are associated with pramipexole response in depression. Brain (London, England: 1878), 143(2), 701–710. 10.1093/brain/awaa002
- Wichers, M., Myin-Germeys, I., Jacobs, N., Peeters, F., Kenis, G., Derom, C., Vlietinck, R., Delespaul, P., & van Os, J. (2007). Genetic risk of depression and stress-induced negative affect in daily life. The British Journal of Psychiatry, 191(3), 218–223. 10.1192/bjp.bp.106.032201
- Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical Bayesian estimation of the drift-diffusion model in Python. Frontiers in neuroinformatics, 14. 10.3389/fninf.2013.00014
- Xiong, H. D., LI, J., Mattar, M. G., & Wilson, R. (2025).
DynamicRL: Data-Driven Estimation of Trial-by-Trial Reinforcement Learning Parameters . In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 47). 10.31234/osf.io/4xumc_v2 - Zald, D. H., & Treadway, M. T. (2017). Reward processing, neuroeconomics, and psychopathology. Annual review of clinical psychology, 13, 471–495. 10.1146/annurev-clinpsy-032816-044957
