Have a personal or library account? Click to login
Reinforcement Learning and Decision Making in Depression in Adolescents and Young Adults: Insights from a New Model of the Probabilistic Reward Task Cover

Reinforcement Learning and Decision Making in Depression in Adolescents and Young Adults: Insights from a New Model of the Probabilistic Reward Task

Open Access
|Dec 2025

References

  1. Adams, R. A., Huys, Q. J., & Roiser, J. P. (2016). Computational psychiatry: towards a mathematically informed understanding of mental illness. Journal of Neurology, Neurosurgery & Psychiatry, 87(1), 5363.
  2. Admon, R., & Pizzagalli, D. A. (2015). Dysfunctional reward processing in depression. Current opinion in psychology, 4, 114118 . 10.1016/j.copsyc.2014.12.011
  3. Brown, V. M., Zhu, L., Solway, A., Wang, J. M., McCurry, K. L., King-Casas, B., & Chiu, P. H. (2021). Reinforcement Learning Disruptions in Individuals With Depression and Sensitivity to Symptom Change Following Cognitive Behavioral Therapy. JAMA psychiatry, 78(10), 11131122. 10.1001/jamapsychiatry.2021.1844
  4. Brown, W. (1910). Some experimental results in the correlation of mental abilities. British Journal of Psychology, 3(3), 296322. 10.1111/j.2044-8295.1910.tb00207.x
  5. Diekhof, E. K., Falkai, P., & Gruber, O. (2008). Functional neuroimaging of reward processing and decision-making: a review of aberrant motivational and affective processing in addiction and mood disorders. Brain research reviews, 59(1), 164184. 10.1016/j.brainresrev.2008.07.004
  6. Dillon, D. G., Belleau, E. L., Origlio, J., McKee, M., Jahan, A., Meyer, A., Souther, M. K., Brunner, D., Kuhn, M., Ang, Y. S., Cusin, C., Fava, M., & Pizzagalli, D. A. (2024). Using Drift Diffusion and RL Models to Disentangle Effects of Depression On Decision-Making vs. Learning in the Probabilistic Reward Task. Computational psychiatry (Cambridge, Mass.), 8(1), 4669. 10.5334/cpsy.108
  7. Dillon, D. G., Lazarov, A., Dolan, S., Bar-Haim, Y., Pizzagalli, D. A., & Schneier, F. R. (2022). Fast evidence accumulation in social anxiety disorder enhances decision making in a probabilistic reward task. Emotion, 22(1), 118. 10.1037/emo0001053
  8. Dombrovski, A. Y., Clark, L., Siegle, G. J., Butters, M. A., Ichikawa, N., Sahakian, B. J., & Szanto, K. (2010). Reward/Punishment reversal learning in older suicide attempters. The American journal of psychiatry, 167(6), 699707. 10.1176/appi.ajp.2009.09030407
  9. Fassett-Carman, A. N., Moser, A. D., Ruzic, L., Neilson, C., Jones, J., Barnes-Horowitz, S., Schneck, C. D., & Kaiser, R. H. (2023). Amygdala and nucleus accumbens activation during reward anticipation moderates the association between life stressor frequency and depressive symptoms. Journal of Affective Disorders, 330, 309318. https://www.sciencedirect.com/science/article/pii/S0165032723003208
  10. First, M. B., Williams, J. B., Karg, R. S., & Spitzer, R. L. (2015). Structured clinical interview for DSM-5—Research version (SCID-5 for DSM-5, research version; SCID-5-RV). American Psychiatric Association (pp. 194).
  11. Forbes, E. E., & Dahl, R. E. (2012). Research Review: altered reward function in adolescent depression: what, when and how? Journal of Child Psychology and Psychiatry, 53(1), 315. 10.1111/j.1469-7610.2011.02477.x
  12. Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical science, 457472. 10.1214/ss/1177011136
  13. Goldstein-Piekarski, A. N., Ball, T. M., Samara, Z., Staveland, B. R., Keller, A. S., Fleming, S. L., Grisanzio, K. A., Holt-Gosselin, B., Stetz, P., Ma, J., & Williams, L. M. (2022). Mapping Neural Circuit Biotypes to Symptoms and Behavioral Dimensions of Depression and Anxiety. Biological psychiatry, 91(6), 561571. 10.1016/j.biopsych.2021.06.024
  14. Grob, S., Pizzagalli, D. A., Dutra, S. J., Stern, J., Mörgeli, H., Milos, G., Schnyder, U., & Hasler, G. (2012). Dopamine-Related Deficit in Reward Learning After Catecholamine Depletion in Unmedicated, Remitted Subjects with Bulimia Nervosa. Neuropsychopharmacology (New York, N.Y.), 37(8), 19451952. 10.1038/npp.2012.41
  15. Halahakoon, D. C., Kieslich, K., O’Driscoll, C., Nair, A., Lewis, G., & Roiser, J. P. (2020). Reward-Processing Behavior in Depressed Participants Relative to Healthy Volunteers: A Systematic Review and Meta-analysis. JAMA psychiatry, 77(12), 12861295. 10.1001/jamapsychiatry.2020.2139
  16. Hauser, T. U., Will, G. J., Dubois, M., & Dolan, R. J. (2019). Annual research review: developmental computational psychiatry. Journal of Child psychology and Psychiatry, 60(4), 412426. 10.1111/jcpp.12964
  17. Hobbs, C., Sui, J., Kessler, D., Munafò, M. R., & Button, K. S. (2023). Self-processing in relation to emotion and reward processing in depression. Psychological medicine, 53(5), 19241936. 10.1017/S0033291721003597
  18. Huys, Q. J., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature neuroscience, 19(3), 404413. 10.1038/nn.4238
  19. Huys, Q. J., Pizzagalli, D. A., Bogdan, R., & Dayan, P. (2013). Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biology of mood & anxiety disorders, 3(1), 116. 10.1186/2045-5380-3-12
  20. Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S., Quinn, K., Sanislow, C., & Wang, P. (2010). Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. The American journal of psychiatry, 167(7), 748751. 10.1176/appi.ajp.2010.09091379
  21. Kaiser, R. H., Moser, A. D., Neilson, C., Peterson, E. C., Jones, J., Hough, C. M., Rosenberg, B. M., Sandman, C. F., Schneck, C. D., Miklowitz, D. J., & Friedman, N. P. (2022). Mood Symptom Dimensions and Developmental Differences in Neurocognition in Adolescence. Clinical Psychological Science, 11(2), 308325. 10.1177/21677026221111389
  22. Kaiser, R. H., Treadway, M. T., Wooten, D. W., Kumar, P., Goer, F., Murray, L., Beltzer, M., Pechtel, P., Whitton, A., Cohen, A. L., Alpert, N. M., El Fakhri, G., Normandin, M. D., & Pizzagalli, D. A. (2018). Frontostriatal and Dopamine Markers of Individual Differences in Reinforcement Learning: A Multi-modal Investigation. Cerebral cortex (New York, N.Y.: 1991), 28(12), 42814290. 10.1093/cercor/bhx281
  23. Kangas, B. D., Der-Avakian, A., & Pizzagalli, D. A. (2022). Probabilistic reinforcement learning and anhedonia. In Anhedonia: Preclinical, Translational, and Clinical Integration (pp. 355377). Springer International Publishing. 10.1007/7854_2022_349
  24. Keren, H., O’Callaghan, G., Vidal-Ribas, P., Buzzell, G. A., Brotman, M. A., Leibenluft, E., Pan, P. M., Meffert, L., Kaiser, A., Wolke, S., Pine, D. S., & Stringaris, A. (2018). Reward Processing in Depression: A Conceptual and Meta-Analytic Review Across fMRI and EEG Studies. The American journal of psychiatry, 175(11), 11111120. 10.1176/appi.ajp.2018.17101124
  25. Lawlor, V. M., Webb, C. A., Wiecki, T. V., Frank, M. J., Trivedi, M., Pizzagalli, D. A., & Dillon, D. G. (2020). Dissecting the impact of depression on decision-making. Psychological medicine, 50(10), 16131622. 10.1017/S0033291719001570
  26. Letkiewicz, A. M., Cochran, A. L., Mittal, V. A., Walther, S., & Shankman, S. A. (2022). Reward-based reinforcement learning is altered among individuals with a history of major depressive disorder and psychomotor retardation symptoms. Journal of psychiatric research, 152, 175181. 10.1016/j.jpsychires.2022.06.032
  27. Luking, K. R., Pagliaccio, D., Luby, J. L., & Barch, D. M. (2016). Reward processing and risk for depression across development. Trends in cognitive sciences, 20(6), 456468. 10.1016/j.tics.2016.04.002
  28. Morris, B. H., Bylsma, L. M., Yaroslavsky, I., Kovacs, M., & Rottenberg, J. (2015). Reward learning in pediatric depression and anxiety: preliminary findings in a high-risk sample. Depression and anxiety, 32(5), 373381. 10.1002/da.22358
  29. Pedersen, M. L., & Frank, M. J. (2020). Simultaneous hierarchical bayesian parameter estimation for reinforcement learning and drift diffusion models: a tutorial and links to neural data. Computational Brain & Behavior, 3(4), 458471. 10.1007/s42113-020-00084-w
  30. Pedersen, M. L., Frank, M. J., & Biele, G. (2017). The drift diffusion model as the choice rule in reinforcement learning. Psychonomic bulletin & review, 24(4), 12341251. 10.3758/s13423-016-1199-y
  31. Peterson, E. C., Rosenberg, B. M., Hough, C. M., Sandman, C. F., Neilson, C., Miklowitz, D. J., & Kaiser, R. H. (2021). Behavioral mediators of stress-related mood symptoms in adolescence & young adulthood. Journal of Affective Disorders, 294, 94102. 10.1016/j.jad.2021.06.079
  32. Peterson, E. C., Snyder, H. R., Neilson, C., Rosenberg, B. M., Hough, C. M., Sandman, C. F., Ohanian, L., Garcia, S., Kotz, J., Finegan, J., Ryan, C. A., Gyimah, A., Sileo, S., Miklowitz, D. J., Friedman, N. P., & Kaiser, R. H. (2022). General and Specific Dimensions of Mood Symptoms Are Associated With Impairments in Common Executive Function in Adolescence and Young Adulthood. Frontiers in human neuroscience, 16, 838645. 10.3389/fnhum.2022.838645
  33. Pike, A. C., & Robinson, O. J. (2022). Reinforcement learning in patients with mood and anxiety disorders vs control individuals: A systematic review and meta-analysis. JAMA psychiatry, 79(4), 313322. 10.1001/jamapsychiatry.2022.0051
  34. Pitliya, R. J., Nelson, B. D., Hajcak, G., & Jin, J. (2022). Drift-Diffusion Model Reveals Impaired Reward-Based Perceptual Decision-Making Processes Associated with Depression in Late Childhood and Early Adolescent Girls. Research on Child and Adolescent Psychopathology, 50(11), 15151528. 10.1007/s10802-022-00936-y
  35. Pizzagalli, D. A., Iosifescu, D., Hallett, L. A., Ratner, K. G., & Fava, M. (2008). Reduced hedonic capacity in major depressive disorder: evidence from a probabilistic reward task. Journal of psychiatric research, 43(1), 7687. 10.1016/j.jpsychires.2008.03.001
  36. Pizzagalli, D. A., Jahn, A. L., & O’Shea, J. P. (2005). Toward an objective characterization of an anhedonic phenotype: A signal-detection approach. Biological Psychiatry, 57(4), 319327. 10.1016/j.biopsych.2004.11.026
  37. Ratcliff, R., & McKoon, G. (2018). Modeling numerosity representation with an integrated diffusion model. Psychological review, 125(2), 183. 10.1037/rev0000085
  38. Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological science, 9(5), 347356. 10.1111/1467-9280.00067
  39. Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. K. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 6499). Appleton-Century-Crofts.
  40. Rupprechter, S., Stankevicius, A., Huys, Q. J., Steele, J. D., & Seriès, P. (2018). Major depression impairs the use of reward values for decision-making. Scientific reports, 8(1), 18. 10.1038/s41598-018-31730-w
  41. Safra, L., Chevallier, C., & Palminteri, S. (2019). Depressive symptoms are associated with blunted reward learning in social contexts. PLoS computational biology, 15(7), e1007224. 10.1371/journal.pcbi.1007224
  42. Serretti, A. (2022). Clinical Utility of Fluid Biomarker in Depressive Disorder. Clinical psychopharmacology and neuroscience: the official scientific journal of the Korean College of Neuropsychopharmacology, 20(4), 585591. 10.9758/cpn.2022.20.4.585
  43. Shen, L., Hu, Y. X., Lv, Q. Y., Yi, Z. H., Gong, J. B., & Yan, C. (2024). Using hierarchical drift diffusion models to elucidate computational mechanisms of reduced reward sensitivity in adolescent major depressive disorder. BMC Psychiatry, 24, 933. 10.1186/s12888-024-06353-3
  44. Spearman, C. C. (1910). Correlation calculated from faulty data. British Journal of Psychology, 3(3), 271295. 10.1111/j.2044-8295.1910.tb00206.x
  45. Sripada, C., & Weigard, A. (2021). Impaired evidence accumulation as a transdiagnostic vulnerability factor in psychopathology. Frontiers in psychiatry, 12, 627179. 10.3389/fpsyt.2021.627179
  46. Stan Development Team. (2022). “RStan: the R interface to Stan.” R package version 2.21.7. https://mc-stan.org/.
  47. Story, T. J., Potter, G. G., Attix, D. K., Welsh-Bohmer, K. A., & Steffens, D. C. (2008). Neurocognitive Correlates of Response to Treatment in Late-Life Depression. The American Journal of Geriatric Psychiatry, 16(9), 752759. 10.1097/JGP.0b013e31817e739a
  48. Treadway, M. T., & Zald, D. H. (2013). Parsing anhedonia: translational models of reward-processing deficits in psychopathology. Current directions in psychological science, 22(3), 244249. 10.1177/0963721412474460
  49. Tyrrell, J., Mulugeta, A., Wood, A. R., Zhou, A., Beaumont, R. N., Tuke, M. A., Jones, S. E., Ruth, K. S., Yaghootkar, H., Sharp, S., Thompson, W. D., Ji, Y., Harrison, J., Freathy, R. M., Murray, A., Weedon, M. N., Lewis, C., Frayling, T. M., & Hyppönen, E. (2019). Using genetics to understand the causal influence of higher BMI on depression. International journal of epidemiology, 48(3), 834848. 10.1093/ije/dyy223
  50. Vrieze, E., Pizzagalli, D. A., Demyttenaere, K., Hompes, T., Sienaert, P., de Boer, P., Schmidt, M., & Claes, S. (2013). Reduced Reward Learning Predicts Outcome in Major Depressive Disorder. Biological Psychiatry, 73(7), 639645. 10.1016/j.biopsych.2012.10.014
  51. Wabersich, D., & Vandekerckhove, J. (2014). The RWiener package: An R package providing distribution functions for the Wiener diffusion model.
  52. Walsh, A. E. L., Browning, M., Drevets, W. C., Furey, M., & Harmer, C. J. (2018). Dissociable temporal effects of bupropion on behavioural measures of emotional and reward processing in depression. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 373(1742), 20170030. 10.1098/rstb.2017.0030
  53. Watson, D., Clark, L. A., Weber, K., Assenheimer, J. S., Strauss, M. E., & McCormick, R. A. (1995b). Testing a tripartite model: II. Exploring the symptom structure of anxiety and depression in student, adult, and patient samples. J. Abnorm. Psychol. 104(1), 1525. 10.1037//0021-843x.104.1.15
  54. Watson, D., Weber, K., Assenheimer, J. S., Clark, L. A., Strauss, M. E., & McCormick, R. A. (1995a). Testing a tripartite model: I. Evaluating the convergent and discriminant validity of anxiety and depression symptom scales. J. Abnorm. Psychol. 104(1), 314. 10.1037//0021-843x.104.1.3
  55. White, C. N., & Poldrack, R. A. (2014). Decomposing bias in different types of simple decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(2), 385398. 10.1037/a0034851
  56. Whitton, A. E., Reinen, J. M., Slifstein, M., Ang, Y.-S., McGrath, P. J., Iosifescu, D. V., Abi-Dargham, A., Pizzagalli, D. A., & Schneier, F. R. (2020). Baseline reward processing and ventrostriatal dopamine function are associated with pramipexole response in depression. Brain (London, England: 1878), 143(2), 701710. 10.1093/brain/awaa002
  57. Wichers, M., Myin-Germeys, I., Jacobs, N., Peeters, F., Kenis, G., Derom, C., Vlietinck, R., Delespaul, P., & van Os, J. (2007). Genetic risk of depression and stress-induced negative affect in daily life. The British Journal of Psychiatry, 191(3), 218223. 10.1192/bjp.bp.106.032201
  58. Wiecki, T. V., Sofer, I., & Frank, M. J. (2013). HDDM: Hierarchical Bayesian estimation of the drift-diffusion model in Python. Frontiers in neuroinformatics, 14. 10.3389/fninf.2013.00014
  59. Xiong, H. D., LI, J., Mattar, M. G., & Wilson, R. (2025). DynamicRL: Data-Driven Estimation of Trial-by-Trial Reinforcement Learning Parameters. In Proceedings of the Annual Meeting of the Cognitive Science Society (Vol. 47). 10.31234/osf.io/4xumc_v2
  60. Zald, D. H., & Treadway, M. T. (2017). Reward processing, neuroeconomics, and psychopathology. Annual review of clinical psychology, 13, 471495. 10.1146/annurev-clinpsy-032816-044957
DOI: https://doi.org/10.5334/cpsy.147 | Journal eISSN: 2379-6227
Language: English
Submitted on: Apr 19, 2025
|
Accepted on: Nov 24, 2025
|
Published on: Dec 30, 2025
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Ziwei Cheng, Amelia D. Moser, Jenna Jones, Christopher D. Schneck, David J. Miklowitz, Daniel G. Dillon, Roselinde H. Kaiser, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.