Have a personal or library account? Click to login
RDoC Framework Through the Lens of Predictive Processing: Focusing on Cognitive Systems Domain Cover

RDoC Framework Through the Lens of Predictive Processing: Focusing on Cognitive Systems Domain

Open Access
|Oct 2024

References

  1. 1Adams, R. A., Brown, H. R., & Friston, K. J. (2014). Bayesian inference, predictive coding and delusions. AVANT. The Journal of the Philosophical-Interdisciplinary Vanguard, 5(3), 5188. 10.26913/50302014.0112.0004
  2. 2Adams, R. A., Pinotsis, D., Tsirlis, K., Unruh, L., Mahajan, A., Horas, A. M., Convertino, L., Summerfelt, A., Sampath, H., Du, X. M., Kochunov, P., Ji, J. L., Repovs, G., Murray, J. D., Friston, K. J., Hong, L. E., & Anticevic, A. (2022). Computational modeling of electroencephalography and functional magnetic resonance imaging paradigms indicates a consistent loss of pyramidal cell synaptic gain in schizophrenia. Biological Psychiatry, 91(2), 202215. 10.1016/j.biopsych.2021.07.024
  3. 3Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D., & Friston, K. J. (2013). The computational anatomy of psychosis. Frontiers in Psychiatry, 4. 10.3389/fpsyt.2013.00047
  4. 4Aitken, F., & Kok, P. (2022). Hippocampal representations switch from errors to predictions during acquisition of predictive associations. Nature Communications, 13(1), 3294. 10.1038/s41467-022-31040-w
  5. 5Aitken, F., Menelaou, G., Warrington, O., Koolschijn, R. S., Corbin, N., Callaghan, M. F., & Kok, P. (2020). Prior expectations evoke stimulus-specific activity in the deep layers of the primary visual cortex. PLOS Biology, 18(12), e3001023. 10.1371/journal.pbio.3001023
  6. 6Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex as an action-outcome predictor. Nature Neuroscience, 14(10), 13381344. 10.1038/nn.2921
  7. 7Alexander, W. H., & Brown, J. W. (2015). Hierarchical error representation: A computational model of anterior cingulate and dorsolateral prefrontal cortex. Neural Computation, 27(11), 23542410. 10.1162/NECO_a_00779
  8. 8Alexander, W. H., & Brown, J. W. (2018). Frontal cortex function as derived from hierarchical predictive coding. Scientific Reports, 8(1), 3843. 10.1038/s41598-018-21407-9
  9. 9Alexander, W. H., & Brown, J. W. (2019). The role of the anterior cingulate cortex in prediction error and signaling surprise. Topics in Cognitive Science, 11(1), 119135. 10.1111/tops.12307
  10. 10Allen, S. J., Bharadwaj, R., Hyde, T. M., & Kleinman, J. E. (2020). Genetic neuropathology revisited: Gene expression in psychosis. Case Studies in Clinical Psychological Science: Bridging the Gap from Science to Practice, 17. 10.1093/MED/9780190653279.003.0019
  11. 11Altmann, G. T. M., & Kamide, Y. (1999). Incremental interpretation at verbs: Restricting the domain of subsequent reference. Cognition, 73(3), 247264. 10.1016/S0010-0277(99)00059-1
  12. 12American Psychiatric Association. (2022). Diagnostic and statistical manual of mental disorders. 10.1176/appi.books.9780890425787
  13. 13Angeletos Chrysaitis, N., & Seriès, P. (2023). 10 years of bayesian theories of autism: A comprehensive review. Neuroscience & Biobehavioral Reviews, 145, 105022. 10.1016/j.neubiorev.2022.105022
  14. 14Arnal, L. H., Wyart, V., & Giraud, A.-L. (2011). Transitions in neural oscillations reflect prediction errors generated in audiovisual speech. Nature Neuroscience, 14(6), 797801. 10.1038/nn.2810
  15. 15Attinger, A., Wang, B., & Keller, G. B. (2017). Visuomotor coupling shapes the functional development of mouse visual cortex. Cell, 169(7), 12911302.e14. 10.1016/j.cell.2017.05.023
  16. 16Auksztulewicz, R., Barascud, N., Cooray, G., Nobre, A. C., Chait, M., & Friston, K. (2017). The cumulative effects of predictability on synaptic gain in the auditory processing stream. The Journal of Neuroscience, 37(28), 67516760. 10.1523/JNEUROSCI.0291-17.2017
  17. 17Auksztulewicz, R., & Friston, K. (2016). Repetition suppression and its contextual determinants in predictive coding. Cortex, 80, 125140. 10.1016/j.cortex.2015.11.024
  18. 18Badcock, P. B., Davey, C. G., Whittle, S., Allen, N. B., & Friston, K. J. (2017). The depressed brain: An evolutionary systems theory. Trends in Cognitive Sciences, 21(3), 182194. 10.1016/j.tics.2017.01.005
  19. 19Baddeley, A. (2011). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 129. 10.1146/annurev-psych-120710-100422
  20. 20Balota, D. A., Pollatsek, A., & Rayner, K. (1985). The interaction of contextual constraints and parafoveal visual information in reading. Cognitive Psychology, 17(3), 364390. 10.1016/0010-0285(85)90013-1
  21. 21Barascud, N., Pearce, M. T., Griffiths, T. D., Friston, K. J., & Chait, M. (2016). Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns. Proceedings of the National Academy of Sciences, 113(5). 10.1073/pnas.1508523113
  22. 22Barron, H. C., Auksztulewicz, R., & Friston, K. (2020). Prediction and memory: A predictive coding account. Progress in Neurobiology, 192, 101821. 10.1016/j.pneurobio.2020.101821
  23. 23Bastos, A. M., Lundqvist, M., Waite, A. S., Kopell, N., & Miller, E. K. (2020). Layer and rhythm specificity for predictive routing. Proceedings of the National Academy of Sciences, 117(49), 3145931469. 10.1073/pnas.2014868117
  24. 24Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76(4), 695711. 10.1016/j.neuron.2012.10.038
  25. 25Bein, O., Duncan, K., & Davachi, L. (2020). Mnemonic prediction errors bias hippocampal states. Nature Communications, 11(1), 3451. 10.1038/s41467-020-17287-1
  26. 26Berkes, P., Orbán, G., Lengyel, M., & Fiser, J. (2011). Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science, 331(6013), 8387. 10.1126/science.1195870
  27. 27Bhat, A., Irizar, H., Thygesen, J. H., Kuchenbaecker, K., Pain, O., Adams, R. A., Zartaloudi, E., Harju-Seppänen, J., Austin-Zimmerman, I., Wang, B., Muir, R., Summerfelt, A., Du, X. M., Bruce, H., O’Donnell, P., Srivastava, D. P., Friston, K., Hong, L. E., Hall, M.-H., & Bramon, E. (2021). Transcriptome-wide association study reveals two genes that influence mismatch negativity. Cell Reports, 34(11), 108868. 10.1016/j.celrep.2021.108868
  28. 28Cacciaglia, R., Escera, C., Slabu, L., Grimm, S., Sanjuán, A., Ventura-Campos, N., & Ávila, C. (2015). Involvement of the human midbrain and thalamus in auditory deviance detection. Neuropsychologia, 68, 5158. 10.1016/j.neuropsychologia.2015.01.001
  29. 29Calabrò, M., Porcelli, S., Crisafulli, C., Albani, D., Kasper, S., Zohar, J., Souery, D., Montgomery, S., Mantovani, V., Mendlewicz, J., Bonassi, S., Vieta, E., Frustaci, A., Ducci, G., Landi, S., Boccia, S., Bellomo, A., Di Nicola, M., Janiri, L., & Serretti, A. (2020). Genetic variants associated with psychotic symptoms across psychiatric disorders. Neuroscience Letters, 720, 134754. 10.1016/j.neulet.2020.134754
  30. 30Cannon, J., O’Brien, A. M., Bungert, L., & Sinha, P. (2021). Prediction in autism spectrum disorder: A systematic review of empirical evidence. Autism Research, 14(4), 604630. 10.1002/aur.2482
  31. 31Caucheteux, C., Gramfort, A., & King, J.-R. (2023). Evidence of a predictive coding hierarchy in the human brain listening to speech. Nature Human Behaviour. 10.1038/s41562-022-01516-2
  32. 32Chao, Z. C., Huang, Y. T., & Wu, C.-T. (2022). A quantitative model reveals a frequency ordering of prediction and prediction-error signals in the human brain. Communications Biology, 5(1), 1076. 10.1038/s42003-022-04049-6
  33. 33Chu, Q., Ma, O., Hang, Y., & Tian, X. (2023). Dual-stream cortical pathways mediate sensory prediction. Cerebral Cortex, 33(14), 88908903. 10.1093/cercor/bhad168
  34. 34Clementz, B. A., Parker, D. A., Trotti, R. L., McDowell, J. E., Keedy, S. K., Keshavan, M. S., Pearlson, G. D., Gershon, E. S., Ivleva, E. I., Huang, L.-Y., Hill, S. K., Sweeney, J. A., Thomas, O., Hudgens-Haney, M., Gibbons, R. D., & Tamminga, C. A. (2022). Psychosis biotypes: Replication and validation from the b-snip consortium. Schizophrenia Bulletin, 48(1), 5668. 10.1093/schbul/sbab090
  35. 35Clementz, B. A., Sweeney, J. A., Hamm, J. P., Ivleva, E. I., Ethridge, L. E., Pearlson, G. D., Keshavan, M. S., & Tamminga, C. A. (2016). Identification of distinct psychosis biotypes using brain-based biomarkers. American Journal of Psychiatry, 173(4), 373384. 10.1176/appi.ajp.2015.14091200
  36. 36Cohen, B. M., & Öngür, D. (2023). The need for evidence-based updating of icd and dsm models of psychotic and mood disorders. Molecular Psychiatry. 10.1038/s41380-023-01967-7
  37. 37Corlett, P. R., Bansal, S., & Gold, J. M. (2023). Studying healthy psychosislike experiences to improve illness prediction. JAMA Psychiatry, 80(5), 515. 10.1001/jamapsychiatry.2023.0059
  38. 38Corlett, P. R., Horga, G., Fletcher, P. C., Alderson-Day, B., Schmack, K., & Powers, A. R. (2019). Hallucinations and strong priors. Trends in Cognitive Sciences, 23(2), 114127. 10.1016/j.tics.2018.12.001
  39. 39Cuthbert, B. N. (2020). The role of rdoc in future classification of mental disorders. Dialogues in Clinical Neuroscience, 22(1), 8185. 10.31887/DCNS.2020.22.1/bcuthbert
  40. 40Cuthbert, B. N. (2022). Research domain criteria (rdoc): Progress and potential. Current Directions in Psychological Science, 31(2), 107114. 10.1177/09637214211051363
  41. 41Cuthbert, B. N., & Insel, T. R. (2013). Toward the future of psychiatric diagnosis: The seven pillars of rdoc. BMC Medicine, 11(1), 126. 10.1186/1741-7015-11-126
  42. 42Cuthbert, B. N., & Morris, S. E. (2021). Evolving concepts of the schizophrenia spectrum: A research domain criteria perspective. Frontiers in Psychiatry, 12. 10.3389/fpsyt.2021.641319
  43. 43Donaldson, K. R., Novak, K. D., Foti, D., Marder, M., Perlman, G., Kotov, R., & Mohanty, A. (2020). Associations of mismatch negativity with psychotic symptoms and functioning transdiagnostically across psychotic disorders. Journal of Abnormal Psychology, 129(6), 570580. 10.1037/abn0000506
  44. 44Dürschmid, S., Edwards, E., Reichert, C., Dewar, C., Hinrichs, H., Heinze, H.-J., Kirsch, H. E., Dalal, S. S., Deouell, L. Y., & Knight, R. T. (2016). Hierarchy of prediction errors for auditory events in human temporal and frontal cortex. Proceedings of the National Academy of Sciences, 113(24), 67556760. 10.1073/pnas.1525030113
  45. 45Dzafic, I., Larsen, K. M., Darke, H., Pertile, H., Carter, O., Sundram, S., & Garrido, M. I. (2021). Stronger top-down and weaker bottom-up frontotemporal connections during sensory learning are associated with severity of psychotic phenomena. Schizophrenia Bulletin, 47(4), 10391047. 10.1093/schbul/sbaa188
  46. 46Dzafic, I., Randeniya, R., Harris, C. D., Bammel, M., & Garrido, M. I. (2020). Statistical learning and inference is impaired in the nonclinical continuum of psychosis. The Journal of Neuroscience, 40(35), 67596769. 10.1523/JNEUROSCI.0315-20.2020
  47. 47Edwards, E., Soltani, M., Deouell, L. Y., Berger, M. S., & Knight, R. T. (2005). High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. Journal of Neurophysiology, 94(6), 42694280. 10.1152/jn.00324.2005
  48. 48Egner, T., Monti, J. M., & Summerfield, C. (2010). Expectation and surprise determine neural population responses in the ventral visual stream. The Journal of Neuroscience, 30(49), 1660116608. 10.1523/JNEUROSCI.2770-10.2010
  49. 49El Karoui, I., King, J.-R., Sitt, J., Meyniel, F., Van Gaal, S., Hasboun, D., Adam, C., Navarro, V., Baulac, M., Dehaene, S., Cohen, L., & Naccache, L. (2015). Event-related potential, time-frequency, and functional connectivity facets of local and global auditory novelty processing: An intracranial study in humans. Cerebral Cortex, 25(11), 42034212. 10.1093/cercor/bhu143
  50. 50Escera, C. (2023). Contributions of the subcortical auditory system to predictive coding and the neural encoding of speech. Current Opinion in Behavioral Sciences, 54, 101324. 10.1016/j.cobeha.2023.101324
  51. 51Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4. 10.3389/fnhum.2010.00215
  52. 52Ferrante, M., Redish, A. D., Oquendo, M. A., Averbeck, B. B., Kinnane, M. E., & Gordon, J. A. (2019). Computational psychiatry: A report from the 2017 nimh workshop on opportunities and challenges. Molecular Psychiatry, 24(4), 479483. 10.1038/s41380-018-0063-z
  53. 53Ferreira, F., & Chantavarin, S. (2018). Integration and prediction in language processing: A synthesis of old and new. Current Directions in Psychological Science, 27(6), 443448. 10.1177/0963721418794491
  54. 54Ferreira, F., & Qiu, Z. (2021). Predicting syntactic structure. Brain Research, 1770, 147632. 10.1016/j.brainres.2021.147632
  55. 55Ficco, L., Mancuso, L., Manuello, J., Teneggi, A., Liloia, D., Duca, S., Costa, T., Kovacs, G. Z., & Cauda, F. (2021). Disentangling predictive processing in the brain: A meta-analytic study in favour of a predictive network. Scientific Reports, 11(1), 16258. 10.1038/s41598-021-95603-5
  56. 56Fiser, A., Mahringer, D., Oyibo, H. K., Petersen, A. V., Leinweber, M., & Keller, G. B. (2016). Experience-dependent spatial expectations in mouse visual cortex. Nature Neuroscience, 19(12), 16581664. 10.1038/nn.4385
  57. 57Fontolan, L., Morillon, B., Liegeois-Chauvel, C., & Giraud, A.-L. (2014). The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex. Nature Communications, 5(1), 4694. 10.1038/ncomms5694
  58. 58Ford, J. M., Hamilton, H. K., Llerena, K., Roach, B. J., & Mathalon, D. H. (2020). Neurophysiologic biomarkers of psychosis: Event-related potential biomarkers. Case Studies in Clinical Psychological Science: Bridging the Gap from Science to Practice, 17. 10.1093/MED/9780190653279.003.0026
  59. 59Forseth, K. J., Hickok, G., Rollo, P. S., & Tandon, N. (2020). Language prediction mechanisms in human auditory cortex. Nature Communications, 11(1), 5240. 10.1038/s41467-020-19010-6
  60. 60Friston, K. (2018). Does predictive coding have a future? Nature Neuroscience, 21(8), 10191021. 10.1038/s41593-018-0200-7
  61. 61Friston, K. (2023). Computational psychiatry: From synapses to sentience. Molecular Psychiatry, 28(1), 256268. 10.1038/s41380-022-01743-z
  62. 62Friston, K. J. (2017). Precision psychiatry. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(8), 640643. 10.1016/j.bpsc.2017.08.007
  63. 63Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19(4), 12731302. 10.1016/S1053-8119(03)00202-7
  64. 64Friston, K. J., Stephan, K. E., Montague, R., & Dolan, R. J. (2014). Computational psychiatry: The brain as a phantastic organ. The Lancet Psychiatry, 1(2), 148158. 10.1016/S2215-0366(14)70275-5
  65. 65Gagnepain, P., Henson, R. N., & Davis, M. H. (2012). Temporal predictive codes for spoken words in auditory cortex. Current Biology, 22(7), 615621. 10.1016/j.cub.2012.02.015
  66. 66Garrido, M. I., Barnes, G. R., Kumaran, D., Maguire, E. A., & Dolan, R. J. (2015). Ventromedial prefrontal cortex drives hippocampal theta oscillations induced by mismatch computations. NeuroImage, 120, 362370. 10.1016/j.neuroimage.2015.07.016
  67. 67Garrido, M. I., Friston, K. J., Kiebel, S. J., Stephan, K. E., Baldeweg, T., & Kilner, J. M. (2008). The functional anatomy of the mmn: A dcm study of the roving paradigm. NeuroImage, 42(2), 936944. 10.1016/j.neuroimage.2008.05.018
  68. 68Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453463. 10.1016/j.clinph.2008.11.029
  69. 69Garrido, M. I., Rowe, E. G., Halász, V., & Mattingley, J. B. (2018). Bayesian mapping reveals that attention boosts neural responses to predicted and unpredicted stimuli. Cerebral Cortex, 28(5), 17711782. 10.1093/cercor/bhx087
  70. 70Gavornik, J. P., & Bear, M. F. (2014). Learned spatiotemporal sequence recognition and prediction in primary visual cortex. Nature Neuroscience, 17(5), 732737. 10.1038/nn.3683
  71. 71Gazzaniga, M., Ivary, R., & Mangun, G. (2019). Cognitive neuroscience: The biology of the mind (fifth). W.W. Norton & Company.
  72. 72Gold, J. M., Corlett, P. R., Erickson, M., Waltz, J. A., August, S., Dutterer, J., & Bansal, S. (2023). Phenomenological and cognitive features associated with auditory hallucinations in clinical and nonclinical voice hearers. Schizophrenia Bulletin, 49(6), 15911601. 10.1093/schbul/sbad083
  73. 73Haarsma, J., Kok, P., & Browning, M. (2022). The promise of layer-specific neuroimaging for testing predictive coding theories of psychosis. Schizophrenia Research, 245, 6876. 10.1016/j.schres.2020.10.009
  74. 74Hainmueller, T., & Bartos, M. (2020). Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nature Reviews Neuroscience, 21(3), 153168. 10.1038/s41583-019-0260-z
  75. 75Hartwigsen, G., Golombek, T., & Obleser, J. (2015). Repetitive transcranial magnetic stimulation over left angular gyrus modulates the predictability gain in degraded speech comprehension. Cortex, 68, 100110. 10.1016/j.cortex.2014.08.027
  76. 76Heilbron, M., & Chait, M. (2018). Great expectations: Is there evidence for predictive coding in auditory cortex? Neuroscience, 389, 5473. 10.1016/j.neuroscience.2017.07.061
  77. 77Hein, T. P., Gong, Z., Ivanova, M., Fedele, T., Nikulin, V., & Herrojo Ruiz, M. (2023). Anterior cingulate and medial prefrontal cortex oscillations underlie learning alterations in trait anxiety in humans. Communications Biology, 6(1), 271. 10.1038/s42003-023-04628-1
  78. 78Henson, R. N., & Gagnepain, P. (2010). Predictive, interactive multiple memory systems. Hippocampus, 20(11), 13151326. 10.1002/hipo.20857
  79. 79Herzog, L. E., Wang, L., Yu, E., Choi, S., Farsi, Z., Song, B. J., Pan, J. Q., & Sheng, M. (2023). Mouse mutants in schizophrenia risk genes grin2a and akap11 show eeg abnormalities in common with schizophrenia patients. Translational Psychiatry, 13(1), 92. 10.1038/s41398-023-02393-7
  80. 80Hickok, G. (2009). The functional neuroanatomy of language. Physics of Life Reviews, 6(3), 121143. 10.1016/j.plrev.2009.06.001
  81. 81Hill, S. K., Keefe, R. S. E., & Sweeney, J. A. (2020). Cognitive biomarkers of psychosis. In Psychotic disorders (pp. 195203). Oxford University Press. 10.1093/med/9780190653279.003.0023
  82. 82Hodson, R., Mehta, M., & Smith, R. (2024). The empirical status of predictive coding and active inference. Neuroscience & Biobehavioral Reviews, 157, 105473. 10.1016/j.neubiorev.2023.105473
  83. 83Homan, P., Levy, I., Feltham, E., Gordon, C., Hu, J., Li, J., Pietrzak, R. H., Southwick, S., Krystal, J. H., Harpaz-Rotem, I., & Schiller, D. (2019). Neural computations of threat in the aftermath of combat trauma. Nature Neuroscience, 22(3), 470476. 10.1038/s41593-018-0315-x
  84. 84Hsu, Y.-F., Hämäläinen, J. A., & Waszak, F. (2014). Both attention and prediction are necessary for adaptive neuronal tuning in sensory processing. Frontiers in Human Neuroscience, 8. 10.3389/fnhum.2014.00152
  85. 85Huettig, F. (2015). Four central questions about prediction in language processing. Brain Research, 1626, 118135. 10.1016/j.brainres.2015.02.014
  86. 86Huys, Q. J. M., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 19(3), 404413. 10.1038/nn.4238
  87. 87Katsumi, Y., Zhang, J., Chen, D., Kamona, N., Bunce, J. G., Hutchinson, J. B., Yarossi, M., Tunik, E., Dickerson, B. C., Quigley, K. S., & Barrett, L. F. (2023). Correspondence of functional connectivity gradients across human isocortex, cerebellum, and hippocampus. Communications Biology, 6(1), 401. 10.1038/s42003-023-04796-0
  88. 88Keller, G. B., & Mrsic-Flogel, T. D. (2018). Predictive processing: A canonical cortical computation. Neuron, 100(2), 424435. 10.1016/j.neuron.2018.10.003
  89. 89Kirihara, K., Tada, M., Koshiyama, D., Fujioka, M., Usui, K., Araki, T., & Kasai, K. (2020). A predictive coding perspective on mismatch negativity impairment in schizophrenia. Frontiers in Psychiatry, 11. 10.3389/fpsyt.2020.00660
  90. 90Kok, P., Bains, L. J., van Mourik, T., Norris, D. G., & de Lange, F. P. (2016). Selective activation of the deep layers of the human primary visual cortex by top-down feedback. Current Biology, 26(3), 371376. 10.1016/j.cub.2015.12.038
  91. 91Kok, P., Rahnev, D., Jehee, J. F. M., Lau, H. C., & de Lange, F. P. (2012). Attention reverses the effect of prediction in silencing sensory signals. Cerebral Cortex, 22(9), 21972206. 10.1093/cercor/bhr310
  92. 92Köster, M., Kayhan, E., Langeloh, M., & Hoehl, S. (2020). Making sense of the world: Infant learning from a predictive processing perspective. Perspectives on Psychological Science, 15(3), 562571. 10.1177/1745691619895071
  93. 93Lahti, A. C., & Kraguljac, N. V. (2020). Mr spectroscopy. Case Studies in Clinical Psychological Science: Bridging the Gap from Science to Practice, 17. 10.1093/MED/9780190653279.003.0030
  94. 94Lange, I., Papalini, S., & Vervliet, B. (2021). Experimental models in psychopathology research: The relation between research domain criteria and experimental psychopathology. Current Opinion in Psychology, 41, 118123. 10.1016/j.copsyc.2021.07.004
  95. 95Larsen, K. M., Dzafic, I., Darke, H., Pertile, H., Carter, O., Sundram, S., & Garrido, M. I. (2020). Aberrant connectivity in auditory precision encoding in schizophrenia spectrum disorder and across the continuum of psychotic-like experiences. Schizophrenia Research, 222, 185194. 10.1016/j.schres.2020.05.061
  96. 96Larsen, K. M., Madsen, K. S., Ver Loren van Themaat, A. H., Thorup, A. A. E., Plessen, K. J., Mors, O., Nordentoft, M., & Siebner, H. R. (2024). Children at familial high risk of schizophrenia and bipolar disorder exhibit altered connectivity patterns during pre-attentive processing of an auditory prediction error. Schizophrenia Bulletin, 50(1), 166176. 10.1093/schbul/sbad092
  97. 97Larsen, K. M., Mørup, M., Birknow, M. R., Fischer, E., Hulme, O., Vangkilde, A., Schmock, H., Baaré, W. F. C., Didriksen, M., Olsen, L., Werge, T., Siebner, H. R., & Garrido, M. I. (2018). Altered auditory processing and effective connectivity in 22q11.2 deletion syndrome. Schizophrenia Research, 197, 328336. 10.1016/j.schres.2018.01.026
  98. 98Lawson, R. P., Mathys, C., & Rees, G. (2017). Adults with autism overestimate the volatility of the sensory environment. Nature Neuroscience, 20(9), 12931299. 10.1038/nn.4615
  99. 99Lecaignard, F., Bertrand, O., Caclin, A., & Mattout, J. (2022). Neurocomputational underpinnings of expected surprise. The Journal of Neuroscience, 42(3), 474486. 10.1523/JNEUROSCI.0601-21.2021
  100. 100Lee, M., Sehatpour, P., Hoptman, M. J., Lakatos, P., Dias, E. C., Kantrowitz, J. T., Martinez, A. M., & Javitt, D. C. (2017). Neural mechanisms of mismatch negativity dysfunction in schizophrenia. Molecular Psychiatry, 22(11), 15851593. 10.1038/mp.2017.3
  101. 101Leptourgos, P., Bansal, S., Dutterer, J., Culbreth, A., Powers, A., Suthaharan, P., Kenney, J., Erickson, M., Waltz, J., Wijtenburg, S. A., Gaston, F., Rowland, L. M., Gold, J., & Corlett, P. (2022). Relating glutamate, conditioned, and clinical hallucinations via 1h-mr spectroscopy. Schizophrenia Bulletin, 48(4), 912920. 10.1093/schbul/sbac006
  102. 102Liu, Z., Shu, S., Lu, L., Ge, J., & Gao, J.-H. (2020). Spatiotemporal dynamics of predictive brain mechanisms during speech processing: An meg study. Brain and Language, 203, 104755. 10.1016/j.bandl.2020.104755
  103. 103Lyall, A. E., Seitz, J., & Kubicki, M. (2020). Structural connectivity in psychosis. Case Studies in Clinical Psychological Science: Bridging the Gap from Science to Practice, 17. 10.1093/MED/9780190653279.003.0028
  104. 104Lyndon, S., & Corlett, P. R. (2020). Hallucinations in posttraumatic stress disorder: Insights from predictive coding. Journal of Abnormal Psychology, 129(6), 534543. 10.1037/abn0000531
  105. 105McDonald, S. A., & Shillcock, R. C. (2003). Eye movements reveal the on-line computation of lexical probabilities during reading. Psychological Science, 14(6), 648652. 10.1046/j.0956-7976.2003.psci_1480.x
  106. 106Mendoza-Halliday, D., Major, A. J., Lee, N., Lichtenfeld, M. J., Carlson, B., Mitchell, B., Meng, P. D., Xiong, Y. S., Westerberg, J. A., Jia, X., Johnston, K. D., Selvanayagam, J., Everling, S., Maier, A., Desimone, R., Miller, E. K., & Bastos, A. M. (2024). A ubiquitous spectrolaminar motif of local field potential power across the primate cortex. Nature Neuroscience, 27(3), 547560. 10.1038/s41593-023-01554-7
  107. 107Menon, V., & D’Esposito, M. (2022). The role of pfc networks in cognitive control and executive function. Neuropsychopharmacology, 47(1), 90103. 10.1038/s41386-021-01152-w
  108. 108Miller, E. K. (2000). The prefontral cortex and cognitive control. Nature Reviews Neuroscience, 1(1), 5965. 10.1038/35036228
  109. 109Mohanta, S., Afrasiabi, M., Casey, C. P., Tanabe, S., Redinbaugh, M. J., Kambi, N. A., Phillips, J. M., Polyakov, D., Filbey, W., Austerweil, J. L., Sanders, R. D., & Saalmann, Y. B. (2021). Predictive feedback, early sensory representations, and fast responses to predicted stimuli depend on nmda receptors. The Journal of Neuroscience, 41(49), 1013010147. 10.1523/JNEUROSCI.1311-21.2021
  110. 110Moran, R. J., Campo, P., Symmonds, M., Stephan, K. E., Dolan, R. J., & Friston, K. J. (2013). Free energy, precision and learning: The role of cholinergic neuromodulation. Journal of Neuroscience, 33(19), 82278236. 10.1523/JNEUROSCI.4255-12.2013
  111. 111Morris, R. K. (1994). Lexical and message-level sentence context effects on fixation times in reading. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(1), 92103. 10.1037/0278-7393.20.1.92
  112. 112Morris, S. E., Pacheco, J., & Sanislow, C. A. (2020). Applying research domain criteria (rdoc) dimensions to psychosis. In Psychotic disorders (pp. 2937). Oxford University Press. 10.1093/med/9780190653279.003.0004
  113. 113Morris, S. E., Sanislow, C. A., Pacheco, J., Vaidyanathan, U., Gordon, J. A., & Cuthbert, B. N. (2022). Revisiting the seven pillars of rdoc. BMC Medicine, 20(1), 220. 10.1186/s12916-022-02414-0
  114. 114Moutoussis, M., Fearon, P., El-Deredy, W., Dolan, R. J., & Friston, K. J. (2014). Bayesian inferences about the self (and others): A review. Consciousness and Cognition, 25, 6776. 10.1016/j.concog.2014.01.009
  115. 115Muckli, L., De Martino, F., Vizioli, L., Petro, L. S., Smith, F. W., Ugurbil, K., Goebel, R., & Yacoub, E. (2015). Contextual feedback to superficial layers of v1. Current Biology, 25(20), 26902695. 10.1016/j.cub.2015.08.057
  116. 116National Institute of Mental Health (NIMH). (2024, April 20). Research Domain Criteria (RDoC). https://grants.nih.gov/grants/guide/rfa-files/RFA-MH-19-242.html
  117. 117Nieuwland, M. S. (2019). Do ‘early’ brain responses reveal word form prediction during language comprehension? a critical review. Neuroscience & Biobehavioral Reviews, 96, 367400. 10.1016/j.neubiorev.2018.11.019
  118. 118Obleser, J., & Kotz, S. A. (2010). Expectancy constraints in degraded speech modulate the language comprehension network. Cerebral Cortex, 20(3), 633640. 10.1093/cercor/bhp128
  119. 119Okada, K., Matchin, W., & Hickok, G. (2018). Neural evidence for predictive coding in auditory cortex during speech production. Psychonomic Bulletin & Review, 25(1), 423430. 10.3758/s13423-017-1284-x
  120. 120Ortiz-Tudela, J., Bergmann, J., Bennett, M., Ehrlich, I., Muckli, L., & Shing, Y. L. (2023). Concurrent contextual and time-distant mnemonic information co-exist as feedback in the human visual cortex. NeuroImage, 265, 119778. 10.1016/j.neuroimage.2022.119778
  121. 121O’Toole, S. M., Oyibo, H. K., & Keller, G. B. (2023). Molecularly targetable cell types in mouse visual cortex have distinguishable prediction error responses. Neuron, 111(18), 29182928.e8. 10.1016/j.neuron.2023.08.015
  122. 122Parr, T., & Friston, K. J. (2017). Working memory, attention, and salience in active inference. Scientific Reports, 7(1), 14678. 10.1038/s41598-017-15249-0
  123. 123Parr, T., & Friston, K. J. (2018). The anatomy of inference: Generative models and brain structure. Frontiers in Computational Neuroscience, 12. 10.3389/fncom.2018.00090
  124. 124Parr, T., & Friston, K. J. (2019). Attention or salience? Current Opinion in Psychology, 29, 15. 10.1016/j.copsyc.2018.10.006
  125. 125Parr, T., Rikhye, R. V., Halassa, M. M., & Friston, K. J. (2020). Prefrontal computation as active inference. Cerebral Cortex, 30(2), 682695. 10.1093/cercor/bhz118
  126. 126Paulus, M. P., Feinstein, J. S., & Khalsa, S. S. (2019). An active inference approach to interoceptive psychopathology. Annual Review of Clinical Psychology, 15(1), 97122. 10.1146/annurev-clinpsy-050718-095617
  127. 127Pearlson, G., & Stevens, M. (2020). Functional connectivity biomarkers of psychosis. Case Studies in Clinical Psychological Science: Bridging the Gap from Science to Practice, 17. 10.1093/MED/9780190653279.003.0029
  128. 128Pereira, I., Frässle, S., Heinzle, J., Schöbi, D., Do, C. T., Gruber, M., & Stephan, K. E. (2021). Conductance-based dynamic causal modeling: A mathematical review of its application to cross-power spectral densities. NeuroImage, 245, 118662. 10.1016/j.neuroimage.2021.118662
  129. 129Pezzulo, G., Kemere, C., & van der Meer, M. A. A. (2017). Internally generated hippocampal sequences as a vantage point to probe future-oriented cognition. Annals of the New York Academy of Sciences, 1396(1), 144165. 10.1111/nyas.13329
  130. 130Pezzulo, G., Parr, T., & Friston, K. (2024). Active inference as a theory of sentient behavior. Biological Psychology, 186, 108741. 10.1016/j.biopsycho.2023.108741
  131. 131Pezzulo, G., Rigoli, F., & Friston, K. (2015). Active inference, homeostatic regulation and adaptive behavioural control. Progress in Neurobiology, 134, 1735. 10.1016/j.pneurobio.2015.09.001
  132. 132Pezzulo, G., Rigoli, F., & Friston, K. J. (2018). Hierarchical active inference: A theory of motivated control. Trends in Cognitive Sciences, 22(4), 294306. 10.1016/j.tics.2018.01.009
  133. 133Pomerantz, J. R. (2006). Perception: Overview. Encyclopedia of Cognitive Science. 10.1002/0470018860.s00589
  134. 134Posner, M. I. (2023). The evolution and future development of attention networks. Journal of Intelligence, 11(6), 98. 10.3390/jintelligence11060098
  135. 135Posner, M. I., & Rothbart, M. K. (2007). Research on attention networks as a model for the integration of psychological science. Annual Review of Psychology, 58(1), 123. 10.1146/annurev.psych.58.110405.085516
  136. 136Posner, M. I., & Rothbart, M. K. (2023). Fifty years integrating neurobiology and psychology to study attention. Biological Psychology, 180, 108574. 10.1016/j.biopsycho.2023.108574
  137. 137Powers, A. R., Mathys, C., & Corlett, P. R. (2017). Pavlovian conditioning–induced hallucinations result from overweighting of perceptual priors. Science, 357(6351), 596600. 10.1126/science.aan3458
  138. 138Prabhakaran, V., Narayanan, K., Zhao, Z., & Gabrieli, J. D. E. (2000). Integration of diverse information in working memory within the frontal lobe. Nature Neuroscience, 3(1), 8590. 10.1038/71156
  139. 139Radošević, T., Malaia, E. A., & Milković, M. (2022). Predictive processing in sign languages: A systematic review. Frontiers in Psychology, 13. 10.3389/fpsyg.2022.805792
  140. 140Randeniya, R., Oestreich, L. K. L., & Garrido, M. I. (2018). Sensory prediction errors in the continuum of psychosis. Schizophrenia Research, 191, 109122. 10.1016/j.schres.2017.04.019
  141. 141Richards, K. L., Karvelis, P., Lawrie, S. M., & Seriès, P. (2020). Visual statistical learning and integration of perceptual priors are intact in attention deficit hyperactivity disorder. PLOS ONE, 15(12), e0243100. 10.1371/journal.pone.0243100
  142. 142Rosch, R. E., Auksztulewicz, R., Leung, P. D., Friston, K. J., & Baldeweg, T. (2019). Selective prefrontal disinhibition in a roving auditory oddball paradigm under n-methyl-d-aspartate receptor blockade. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(2), 140150. 10.1016/j.bpsc.2018.07.003
  143. 143Ross, C. A., & Margolis, R. L. (2019). Research domain criteria: Strengths, weaknesses, and potential alternatives for future psychiatric research. Complex Psychiatry, 5(4), 218236. 10.1159/000501797
  144. 144Rowe, E. G., Harris, C. D., Dzafic, I., & Garrido, M. I. (2023). Anxiety attenuates learning advantages conferred by statistical stability and induces loss of volatility-attuning in brain activity. Human Brain Mapping, 44(6), 25572571. 10.1002/hbm.26230
  145. 145Sanislow, C. A., Ferrante, M., Pacheco, J., Rudorfer, M. V., & Morris, S. E. (2019). Advancing translational research using nimh research domain criteria and computational methods. Neuron, 101(5), 779782. 10.1016/j.neuron.2019.02.024
  146. 146Scangos, K. W., State, M. W., Miller, A. H., Baker, J. T., & Williams, L. M. (2023). New and emerging approaches to treat psychiatric disorders. Nature Medicine, 29(2), 317333. 10.1038/s41591-022-02197-0
  147. 147Schall, U., Johnston, P., Todd, J., Ward, P. B., & Michie, P. T. (2003). Functional neuroanatomy of auditory mismatch processing: An event-related fmri study of duration-deviant oddballs. NeuroImage, 20(2), 729736. 10.1016/S1053-8119(03)00398-7
  148. 148Schroën, J. A. M., Gunter, T. C., Numssen, O., Kroczek, L. O. H., Hartwigsen, G., & Friederici, A. D. (2023). Causal evidence for a coordinated temporal interplay within the language network. Proceedings of the National Academy of Sciences, 120(47). 10.1073/pnas.2306279120
  149. 149Sedley, W., Gander, P. E., Kumar, S., Kovach, C. K., Oya, H., Kawasaki, H., Howard, M. A., & Griffiths, T. D. (2016). Neural signatures of perceptual inference. ELife, 5. 10.7554/eLife.11476
  150. 150Shine, J. M., Müller, E. J., Munn, B., Cabral, J., Moran, R. J., & Breakspear, M. (2021). Computational models link cellular mechanisms of neuromodulation to large-scale neural dynamics. Nature Neuroscience, 24(6), 765776. 10.1038/s41593-021-00824-6
  151. 151Shipp, S. (2016). Neural elements for predictive coding. Frontiers in Psychology, 7. 10.3389/fpsyg.2016.01792
  152. 152Simmons, J. M., Cuthbert, B., Gordon, J. A., & Ferrante, M. (2020). Introduction: Toward a computational approach to psychiatry. In P. Seriès (Ed.), Computational psychiatry (pp. 1013). The MIT Press. 10.1234/56789
  153. 153Smith, R., Badcock, P., & Friston, K. J. (2021). Recent advances in the application of predictive coding and active inference models within clinical neuroscience. Psychiatry and Clinical Neurosciences, 75(1), 313. 10.1111/pcn.13138
  154. 154Southwell, R., & Chait, M. (2018). Enhanced deviant responses in patterned relative to random sound sequences. Cortex, 109, 92103. 10.1016/j.cortex.2018.08.032
  155. 155Sprevak, M., & Smith, R. (2023). An introduction to predictive processing models of perception and decision-making. Topics in Cognitive Science. 10.1111/tops.12704
  156. 156Sterzer, P., Adams, R. A., Fletcher, P., Frith, C., Lawrie, S. M., Muckli, L., Petrovic, P., Uhlhaas, P., Voss, M., & Corlett, P. R. (2018). The predictive coding account of psychosis. Biological Psychiatry, 84, 634643. 10.1016/j.biopsych.2018.05.015
  157. 157Talsma, D. (2015). Predictive coding and multisensory integration: An attentional account of the multisensory mind. Frontiers in Integrative Neuroscience, 9. 10.3389/fnint.2015.00019
  158. 158Tarasi, L., Trajkovic, J., Diciotti, S., di Pellegrino, G., Ferri, F., Ursino, M., & Romei, V. (2022). Predictive waves in the autism-schizophrenia continuum: A novel biobehavioral model. Neuroscience and Biobehavioral Reviews, 132, 122. 10.1016/j.neubiorev.2021.11.006
  159. 159Tavano, A., & Scharinger, M. (2015). Prediction in speech and language processing. Cortex, 68, 17. 10.1016/j.cortex.2015.05.001
  160. 160Taylor, J. A., Larsen, K. M., & Garrido, M. I. (2020). Multi-dimensional predictions of psychotic symptoms via machine learning. Human Brain Mapping, 41(18), 51515163. 10.1002/hbm.25181
  161. 161Thomas, E. R., Haarsma, J., Nicholson, J., Yon, D., Kok, P., & Press, C. (2024). Predictions and errors are distinctly represented across v1 layers. Current Biology, 34(10), 22652271.e4. 10.1016/j.cub.2024.04.036
  162. 162Topolnik, L., & Tamboli, S. (2022). The role of inhibitory circuits in hippocampal memory processing. Nature Reviews Neuroscience, 23(8), 476492. 10.1038/s41583-022-00599-0
  163. 163Tremblay, S., Shiller, D. M., & Ostry, D. J. (2003). Somatosensory basis of speech production. Nature, 423(6942), 866869. 10.1038/nature01710
  164. 164Van de Cruys, S., Evers, K., Van der Hallen, R., Van Eylen, L., Boets, B., de-Wit, L., & Wagemans, J. (2014). Precise minds in uncertain worlds: Predictive coding in autism. Psychological Review, 121(4), 649675. 10.1037/a0037665
  165. 165Verguts, T. (2017). Computational models of cognitive control. In The wiley handbook of cognitive control (pp. 125142). John Wiley & Sons, Ltd. 10.1002/9781118920497.ch8
  166. 166Walsh, K. S., McGovern, D. P., Clark, A., & O’Connell, R. G. (2020). Evaluating the neurophysiological evidence for predictive processing as a model of perception. Annals of the New York Academy of Sciences, 1464(1), 242268. 10.1111/nyas.14321
  167. 167Wang, B., Zartaloudi, E., Linden, J. F., & Bramon, E. (2022). Neurophysiology in psychosis: The quest for disease biomarkers. Translational Psychiatry, 12(1), 100. 10.1038/s41398-022-01860-x
  168. 168Warrington, O., Graedel, N. N., Callaghan, M. F., & Kok, P. (2024). Communication of perceptual predictions from the hippocampus to the deep layers of the parahippocampal cortex. BioRxiv, 2024.03.28.587186. 10.1101/2024.03.28.587186
  169. 169Weber, L. A., Diaconescu, A. O., Mathys, C., Schmidt, A., Kometer, M., Vollenweider, F., & Stephan, K. E. (2020). Ketamine affects prediction errors about statistical regularities: A computational single-trial analysis of the mismatch negativity. The Journal of Neuroscience, 40(29), 56585668. 10.1523/JNEUROSCI.3069-19.2020
  170. 170Wienholz, A., & Lieberman, A. M. (2019). Semantic processing of adjectives and nouns in american sign language: Effects of reference ambiguity and word order across development. Journal of Cultural Cognitive Science, 3(2), 217234. 10.1007/s41809-019-00024-6
  171. 171Willsey, A. J., Morris, M. T., Wang, S., Willsey, H. R., Sun, N., Teerikorpi, N., Baum, T. B., Cagney, G., Bender, K. J., Desai, T. A., Srivastava, D., Davis, G. W., Doudna, J., Chang, E., Sohal, V., Lowenstein, D. H., Li, H., Agard, D., Keiser, M. J., & Krogan, N. J. (2018). The psychiatric cell map initiative: A convergent systems biological approach to illuminating key molecular pathways in neuropsychiatric disorders. Cell, 174(3), 505520. 10.1016/j.cell.2018.06.016
  172. 172Wood, J., Meyer, A., & Nee, D. E. (2024). Causal evidence for hierarchical predictive coding among cingulo-opercular and frontoparietal networks supporting cognitive control [Paper presented at the Florida State University, Florida, United State]. https://neelab.wixsite.com/neelab/presentations
  173. 173World Health Organization. (2019). International statistical classification of diseases and related health problems (11th ed.) https://icd.who.int/
  174. 174Yu, Y., Huber, L., Yang, J., Jangraw, D. C., Handwerker, D. A., Molfese, P. J., Chen, G., Ejima, Y., Wu, J., & Bandettini, P. A. (2019). Layer-specific activation of sensory input and predictive feedback in the human primary somatosensory cortex. Science Advances, 5(5). 10.1126/sciadv.aav9053
  175. 175Zelano, C., Mohanty, A., & Gottfried, J. A. (2011). Olfactory predictive codes and stimulus templates in piriform cortex. Neuron, 72(1), 178187. 10.1016/j.neuron.2011.08.010
DOI: https://doi.org/10.5334/cpsy.119 | Journal eISSN: 2379-6227
Language: English
Submitted on: Apr 25, 2024
Accepted on: Oct 11, 2024
Published on: Oct 30, 2024
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2024 Anahita Khorrami Banaraki, Armin Toghi, Azar Mohammadzadeh, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.