References
- 1 Achtnicht, M., & Madlener, R. (2014). Factors influencing German house owners’ preferences on energy retrofits. Energy Policy, 68, 254–263. DOI: 10.1016/j.enpol.2014.01.006
- 2 Addy, M. N., Adinyira, E., & Koranteng, C. (2014). Architect’s perception on the challenges of building energy efficiency in Ghana. Structural Survey, 32(5), 365–376. DOI: 10.1108/SS-03-2014-0014
- 3 Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18(3), 91–93. DOI: 10.1016/j.tjem.2018.08.001
-
4
Alberini,
A.,
Banfi,
S., &
Ramseier,
C. (2013).
Energy efficiency investments in the home: Swiss homeowners
and expectations about future energy prices. Energy
Journal, 34(1),
49–86.
www.jstor.org/stable/41969211 . DOI: 10.5547/01956574.34.1.3 - 5 Allcott, H., & Rogers, T. (2014). The short-run and long-run effects of behavioral interventions: Experimental evidence from energy conservation. American Economic Review, 104(10), 3003–3037. DOI: 10.1257/aer.104.10.3003
- 6 Anadón, L. D., Bosetti, V., Bunn, M., Catenacci, M., & Lee, A. (2012). Expert judgments about R&D and the future of nuclear energy. Environmental Science & Technology, 46(21), 11497–11504. DOI: 10.1021/es300612c
- 7 Baker, E., Chon, H., & Keisler, J. (2009). Carbon capture and storage: Combining economic analysis with expert elicitations to inform climate policy. Climatic Change, 96(3), 379–408. DOI: 10.1007/s10584-009-9634-y
- 8 Banfi, S., Farsi, M., Filippini, M., & Jakob, M. (2008). Willingness to pay for energy-saving measures in residential buildings. Energy Economics, 30(2), 503–516. DOI: 10.1016/j.eneco.2006.06.001
-
9
BC Hydro.
(2020, October). BC Hydro residential
rates.
https://www.bchydro.com/accounts-billing/rates-energy-use/electricity-rates/residential-rates.html -
10
BC Ministry of Environment and
Climate Change Strategy. (2019).
Methodological guidance for quantifying greenhouse gas
emissions.
https://www2.gov.bc.ca/assets/gov/environment/climate-change/cng/methodology/2018-pso-methodology.pdf -
11
Bergmann,
J. V. (2016,
June). SDH zoning and land use: How much land do
single detached and duplex houses consume?
https://doodles.mountainmath.ca/blog/2016/06/17/sdh-zoning-and-land-use/ - 12 Bold, C. (2012). Using narrative in research. SAGE. DOI: 10.4135/9781446288160
- 13 Bonett, D. G., & Wright, T. A. (2000). Sample size requirements for estimating Pearson, Spearman and Kendall correlations. Psychometrika, 65(1), 23–28. DOI: 10.1007/BF02294183
- 14 Bosetti, V., Catenacci, M., Fiorese, G., & Verdolini, E. (2012). The future prospect of PV and CSP solar technologies: An expert elicitation survey. Energy Policy, 49, 308–317. DOI: 10.1016/j.enpol.2012.06.024
-
15
British Columbia.
(2019). BC energy step code revision 2. Building and
Safety Standards Branch, BCBC2018, Division B (10.2.3).
https://energystepcode.ca/ -
16
British Columbia Assessment
Authority. (2017). Parcel inventory
data [dataset].
https://www.bcassessment.ca/Property/AssessmentSearch - 17 Brown, B. B. (1968). DELPHI PROCESS: A methodology used for the elicitation of opinions of experts (Technical Report). RAND Corp.
-
18
City Green Solutions.
(2018). Put a label on it: The BC Energy Step Code
& home energy labelling disclosure.
http://energystepcode.ca/app/uploads/sites/257/2019/11/PutALabelOnIt_FINAL_V1.2.pdf -
19
City of Vancouver.
(2015). Renewable city strategy.
https://vancouver.ca/files/cov/renewable-city-strategy-booklet-2015.pdf -
20
City of Vancouver.
(2017). Renewable city action plan economic modelling
results.
https://vancouver.ca/files/cov/energy-and-emissions-forecast-final-report.pdf -
21
CleanBC.
(2018). CleanBC: Clean British Columbia Climate
Strategy (Technical Report).
CleanBC.
https://www2.gov.bc.ca/assets/gov/environment/climate-change/action/cleanbc/cleanbc_2018-bc-climate-strategy.pdf - 22 Clemen, R. T., & Winkler, R. L. (1999). Combining probability distributions from experts in risk analysis. Risk Analysis, 19(2), 187–203. DOI: 10.1023/A:1006917509560
-
23
Connor Properties
Listing. (2019). Listing.
https://connorproperties.ca/recip.html/222926.search/listing.r2331638-2925-waterloo-street-vancouver-v6r-3j4.82343753 - 24 Dahmen, J., von Bergmann, J., & Das, M. (2018). Teardown index: Impact of property values on carbon dioxide emissions of single family housing in Vancouver. Energy and Buildings, 170, 95–106. DOI: 10.1016/j.enbuild.2018.03.012
-
25
Dessai,
S.,
Bhave,
A.,
Birch,
C.,
Conway,
D.,
Garcia-Carreras,
L.,
Gosling, J.
P., Mittal,
N., &
Stainforth,
D. (2018).
Building narratives to characterise uncertainty in regional
climate change through expert elicitation.
Environmental Research Letters,
13(7),
074005 . DOI: 10.1088/1748-9326/aabcdd - 26 Duah, D., Ford, K., & Syal, M. (2014). Expert knowledge elicitation for decision-making in home energy retrofits. Structural Survey, 32(5), 377–395. DOI: 10.1108/SS-01-2014-0004
-
27
Environment and Climate Change
Canada. (2017). Canada’s nationally
determined contribution to UNFCCC.
UNFCCC.
https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Canada%20First/Canada%20First%20NDC-Revised%20submission%202017-05-11.pdf -
28
Environment and Climate Change
Canada. (2019). Canada’s official
greenhouse gas inventory [dataset].
https://open.canada.ca/data/en/dataset/779c7bcf-4982-47eb-af1b-a33618a05e5b -
29
Feng,
H.,
Liyanage, D.
R.,
Karunathilake,
H.,
Sadiq,
R., &
Hewage,
K. (2020).
BIM-based life cycle environmental performance assessment of
single-family houses: Renovation and reconstruction strategies for aging
building stock in British Columbia. Journal of
Cleaner Production, 250,
119543 . DOI: 10.1016/j.jclepro.2019.119543 -
30
Frappé-Sénéclauze,
T.-P.,
Heerema,
D., &
Wu, K.
T. (2017). Deep emissions
reduction in the existing building stock: Key elements of a retrofit
strategy for BC. Results from the November 2016 Thought Leader
Forum (Technical Report). Pembina
Institute.
https://www.pembina.org/reports/retrofit-strategy-bc-report-2017.pdf - 31 Gamtessa, S. F. (2013). An explanation of residential energy-efficiency retrofit behavior in Canada. Energy and Buildings, 57, 155–164. DOI: 10.1016/j.enbuild.2012.11.006
- 32 Garthwaite, P. H., Kadane, J. B., & O’Hagan, A. (2005). Statistical methods for eliciting probability distributions. Journal of the American Statistical Association, 100(470), 680–701. DOI: 10.1198/016214505000000105
- 33 Geekiyanage, D., & Ramachandra, T. (2020). Nexus between running costs and building characteristics of commercial buildings: Hedonic regression modelling. Built Environment Project and Asset Management, 10(3), 389–406. DOI: 10.1108/BEPAM-12-2018-0156
-
34
Gonzalez-Caceres,
A.,
Lassen, A.
K., &
Nielsen, T.
R. (2020).
Barriers and challenges of the recommendation list of
measures under the EPBD scheme: A critical review.
Energy and Buildings, 223,
110065 . DOI: 10.1016/j.enbuild.2020.110065 - 35 Haines, V., & Mitchell, V. (2014). A persona-based approach to domestic energy retrofit. Building Research & Information, 42(4), 462–476. DOI: 10.1080/09613218.2014.893161
- 36 Hrovatin, N., & Zorić, J. (2018). Determinants of energy-efficient home retrofits in Slovenia: The role of information sources. Energy and Buildings, 180, 42–50. DOI: 10.1016/j.enbuild.2018.09.029
-
37
Jakob,
M. (2007).
The drivers of and barriers to energy efficiency in renovation
decisions of single-family home-owners (Technical Report).
ETH Zürich.
https://cepe.ethz.ch/content/dam/ethz/special-interest/mtec/cepe/cepe-dam/documents/research/cepe-wp/CEPE_WP56.pdf - 38 Judson, E. P., & Maller, C. (2014). Housing renovations and energy efficiency: Insights from homeowners’ practices. Building Research & Information, 42(4), 501–511. DOI: 10.1080/09613218.2014.894808
- 39 Kahneman, D., & Tversky, A. (1982). Variants of uncertainty. Cognition, 11(2), 143–157. DOI: 10.1016/0010-0277(82)90023-3
- 40 Kastner, I., & Stern, P. C. (2015). Examining the decision-making processes behind household energy investments: A review. Energy Research & Social Science, 10, 72–89. DOI: 10.1016/j.erss.2015.07.008
-
41
Kendall,
M. (1948).
Rank correlation methods.
Griffin.
https://psycnet.apa.org/record/1948-15040-000 -
42
Kynn,
M. (2008).
The ‘heuristics and biases’ bias in expert
elicitation. Journal of the Royal Statistical
Society. Series A (Statistics in Society),
171(1),
239–264.
https://www.jstor.org/stable/30130739 - 43 Lam, J. C., & Hui, S. C. M. (1996). Sensitivity analysis of energy performance of office buildings. Building and Environment, 31(1), 27–39. DOI: 10.1016/0360-1323(95)00031-3
- 44 Ma, Z., Cooper, P., Daly, D., & Ledo, L. (2012). Existing building retrofits: Methodology and state-of-the-art. Energy and Buildings, 55, 889–902. DOI: 10.1016/j.enbuild.2012.08.018
-
45
Martin,
T. G.,
Kuhnert, P.
M.,
Mengersen,
K., &
Possingham, H.
P. (2005). The
power of expert opinion in ecological models using Bayesian methods: Impact
of grazing on birds. Ecological
Applications, 15(1),
266–280.
https://www.jstor.org/stable/4543351 . DOI: 10.1890/03-5400 - 46 Mata, E., Sasic Kalagasidis, A., & Johnsson, F. (2014). Building-stock aggregation through archetype buildings: France, Germany, Spain and the UK. Building and Environment, 81, 270–282. DOI: 10.1016/j.buildenv.2014.06.013
- 47 Mirzaee, S., Fannon, D., & Ruth, M. (2019). A comparison of preference elicitation methods for multi-criteria design decisions about resilient and sustainable buildings. Environment Systems and Decisions, 39(4), 439–453. DOI: 10.1007/s10669-019-09726-2
- 48 Morgan, M. G. (2014). Use (and abuse) of expert elicitation in support of decision making for public policy. Proceedings of the National Academy of Sciences, USA, 111(20), 7176–7184. DOI: 10.1073/pnas.1319946111
- 49 Morgan, M. G., & Keith, D. W. (1995). Subjective judgments by climate experts. Environmental Science & Technology, 29(10), 468A–476A. DOI: 10.1021/es00010a753
- 50 Nair, G., Gustavsson, L., & Mahapatra, K. (2010). Factors influencing energy efficiency investments in existing Swedish residential buildings. Energy Policy, 38(6), 2956–2963. DOI: 10.1016/j.enpol.2010.01.033
- 51 Palmer, K., Walls, M., Gordon, H., & Gerarden, T. (2013). Assessing the energy-efficiency information gap: Results from a survey of home energy auditors. Energy Efficiency, 6(2), 271–292. DOI: 10.1007/s12053-012-9178-2
- 52 Pasichnyi, O., Wallin, J., & Kordas, O. (2019). Data-driven building archetypes for urban building energy modelling. Energy, 181, 360–377. DOI: 10.1016/j.energy.2019.04.197
-
53
Prabatha,
T.,
Hewage,
K.,
Karunathilake,
H., &
Sadiq,
R. (2020).
To retrofit or not? Making energy retrofit decisions through
life cycle thinking for Canadian residences. Energy
and Buildings, 226,
110393 . DOI: 10.1016/j.enbuild.2020.110393 - 54 Puth, M.-T., Neuhäuser, M., & Ruxton, G. D. (2015). Effective use of Spearman’s and Kendall’s correlation coefficients for association between two measured traits. Animal Behaviour, 102, 77–84. DOI: 10.1016/j.anbehav.2015.01.010
-
55
Qualtrics.
(2019). Qualtrics survey software 2019.
https://www.qualtrics.com/blog/citing-qualtrics/ - 56 Rivers, N., & Jaccard, M. (2006). Useful models for simulating policies to induce technological change. Energy Policy, 34(15), 2038–2047. DOI: 10.1016/j.enpol.2005.02.003
- 57 Salter, J., Lu, Y., Kim, J. C., Kellett, R., Girling, C., Inomata, F., & Krahn, A. (2020). Iterative ‘what-if’ neighborhood simulation: Energy and emissions impacts. Buildings and Cities, 1(1), 293–307. DOI: 10.5334/bc.51
-
58
Shadbolt,
N. (2005).
Eliciting expertise . In J. R. Wilson & N. Corlett (Eds.), Evaluation of human work, 3rd edn (pp. 185–218). CRC Press.https://eprints.soton.ac.uk/264563/1/Elciting_Expertise.pdf . DOI: 10.1201/9781420055948.ch8 -
59
Statistics Canada.
(2017). 2016 Census metropolitan area of
Vancouver [dataset].
https://www12.statcan.gc.ca/census-recensement/2016/as-sa/fogs-spg/Facts-cma-eng.cfm?LANG=Eng&GK=CMA&GC=933&TOPIC=7 -
60
Sustainability Group, City of
Vancouver. (2014, June). Energy
retrofit strategy for existing buildings. Report to the City of Vancouver
Standing Committee on Planning, Transportation and Environment.
https://council.vancouver.ca/20140625/documents/ptec1.pdf - 61 Szwed, P., Dorp, J. R. V., Merrick, J., Mazzuchi, T., & Singh, A. (2006). A Bayesian paired comparison approach for relative accident probability assessment with covariate information. European Journal of Operational Research, 169(1), 157–177. DOI: 10.1016/j.ejor.2004.04.047
-
62
The Vancouver Heritage
Foundation. (2018). Vancouver house styles
hub.
https://www.vancouverheritagefoundation.org/learn-with-us/discover-vancouvers-heritage/vancouver-house-styles/ (Library Catalogwww.vancouverheritagefoundation.org ). -
63
The Vancouver Heritage
Foundation. (2019). Heritage energy retrofit
grant.
https://www.vancouverheritagefoundation.org/get-a-grant/heritage-energy-retrofit-grant/ - 64 Tjørring, L., & Gausset, Q. (2019). Drivers for retrofit: A sociocultural approach to houses and inhabitants. Building Research & Information, 47(4), 394–403. DOI: 10.1080/09613218.2018.1423722
- 65 Trotta, G. (2018). The determinants of energy efficient retrofit investments in the English residential sector. Energy Policy, 120, 175–182. DOI: 10.1016/j.enpol.2018.05.024
- 66 Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 1124–1131. DOI: 10.1126/science.185.4157.1124
- 67 Usher, W., & Strachan, N. (2013). An expert elicitation of climate, energy and economic uncertainties. Energy Policy, 61, 811–821. DOI: 10.1016/j.enpol.2013.06.110
- 68 Verdolini, E., Anadon, L. D., Lu, J., & Nemet, G. F. (2015). The effects of expert selection, elicitation design, and R&D assumptions on experts’ estimates of the future costs of photovoltaics. Energy Policy, 80, 233–243. DOI: 10.1016/j.enpol.2015.01.006
- 69 Vergragt, P. J., & Brown, H. S. (2020). The challenge of energy retrofitting the residential housing stock: Grassroots innovations and socio-technical system change in Worcester, MA. Technology Analysis & Strategic Management, 24(4), 407–420. DOI: 10.1080/09537325.2012.663964
-
70
Wilson,
C.,
Chryssochoidis,
G., &
Pettifor,
H. (2011).
Understanding homeowners’ renovation decisions: Findings of
the VERD Project (Technical Report). UK Energy
Research Centre.
https://tyndall.ac.uk/sites/default/files/verd_summary_report_oct13.pdf - 71 Wilson, C., Crane, L., & Chryssochoidis, G. (2015). Why do homeowners renovate energy efficiently? Contrasting perspectives and implications for policy. Energy Research & Social Science, 7, 12–22. DOI: 10.1016/j.erss.2015.03.002
- 72 Wiser, R., Jenni, K., Seel, J., Baker, E., Hand, M., Lantz, E., & Smith, A. (2016). Expert elicitation survey on future wind energy costs. Nature Energy, 1(10), 1–8. DOI: 10.1038/nenergy.2016.135
- 73 Woudenberg, F. (1991). An evaluation of Delphi. Technological Forecasting and Social Change, 40(2), 131–150. DOI: 10.1016/0040-1625(91)90002-W
- 74 Zahiri, S., & Elsharkawy, H. (2018). Towards energy-efficient retrofit of council housing in London: Assessing the impact of occupancy and energy-use patterns on building performance. Energy and Buildings, 174, 672–681. DOI: 10.1016/j.enbuild.2018.07.010
