Have a personal or library account? Click to login
Determining the retrofit viability of Vancouver’s single-detached homes: an expert elicitation Cover

Determining the retrofit viability of Vancouver’s single-detached homes: an expert elicitation

Open Access
|Apr 2021

References

  1. 1 Achtnicht, M., & Madlener, R. (2014). Factors influencing German house owners’ preferences on energy retrofits. Energy Policy, 68, 254263. DOI: 10.1016/j.enpol.2014.01.006
  2. 2 Addy, M. N., Adinyira, E., & Koranteng, C. (2014). Architect’s perception on the challenges of building energy efficiency in Ghana. Structural Survey, 32(5), 365376. DOI: 10.1108/SS-03-2014-0014
  3. 3 Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18(3), 9193. DOI: 10.1016/j.tjem.2018.08.001
  4. 4 Alberini, A., Banfi, S., & Ramseier, C. (2013). Energy efficiency investments in the home: Swiss homeowners and expectations about future energy prices. Energy Journal, 34(1), 4986. www.jstor.org/stable/41969211. DOI: 10.5547/01956574.34.1.3
  5. 5 Allcott, H., & Rogers, T. (2014). The short-run and long-run effects of behavioral interventions: Experimental evidence from energy conservation. American Economic Review, 104(10), 30033037. DOI: 10.1257/aer.104.10.3003
  6. 6 Anadón, L. D., Bosetti, V., Bunn, M., Catenacci, M., & Lee, A. (2012). Expert judgments about R&D and the future of nuclear energy. Environmental Science & Technology, 46(21), 1149711504. DOI: 10.1021/es300612c
  7. 7 Baker, E., Chon, H., & Keisler, J. (2009). Carbon capture and storage: Combining economic analysis with expert elicitations to inform climate policy. Climatic Change, 96(3), 379408. DOI: 10.1007/s10584-009-9634-y
  8. 8 Banfi, S., Farsi, M., Filippini, M., & Jakob, M. (2008). Willingness to pay for energy-saving measures in residential buildings. Energy Economics, 30(2), 503516. DOI: 10.1016/j.eneco.2006.06.001
  9. 9 BC Hydro. (2020, October). BC Hydro residential rates. https://www.bchydro.com/accounts-billing/rates-energy-use/electricity-rates/residential-rates.html
  10. 10 BC Ministry of Environment and Climate Change Strategy. (2019). Methodological guidance for quantifying greenhouse gas emissions. https://www2.gov.bc.ca/assets/gov/environment/climate-change/cng/methodology/2018-pso-methodology.pdf
  11. 11 Bergmann, J. V. (2016, June). SDH zoning and land use: How much land do single detached and duplex houses consume? https://doodles.mountainmath.ca/blog/2016/06/17/sdh-zoning-and-land-use/
  12. 12 Bold, C. (2012). Using narrative in research. SAGE. DOI: 10.4135/9781446288160
  13. 13 Bonett, D. G., & Wright, T. A. (2000). Sample size requirements for estimating Pearson, Spearman and Kendall correlations. Psychometrika, 65(1), 2328. DOI: 10.1007/BF02294183
  14. 14 Bosetti, V., Catenacci, M., Fiorese, G., & Verdolini, E. (2012). The future prospect of PV and CSP solar technologies: An expert elicitation survey. Energy Policy, 49, 308317. DOI: 10.1016/j.enpol.2012.06.024
  15. 15 British Columbia. (2019). BC energy step code revision 2. Building and Safety Standards Branch, BCBC2018, Division B (10.2.3). https://energystepcode.ca/
  16. 16 British Columbia Assessment Authority. (2017). Parcel inventory data [dataset]. https://www.bcassessment.ca/Property/AssessmentSearch
  17. 17 Brown, B. B. (1968). DELPHI PROCESS: A methodology used for the elicitation of opinions of experts (Technical Report). RAND Corp.
  18. 18 City Green Solutions. (2018). Put a label on it: The BC Energy Step Code & home energy labelling disclosure. http://energystepcode.ca/app/uploads/sites/257/2019/11/PutALabelOnIt_FINAL_V1.2.pdf
  19. 19 City of Vancouver. (2015). Renewable city strategy. https://vancouver.ca/files/cov/renewable-city-strategy-booklet-2015.pdf
  20. 20 City of Vancouver. (2017). Renewable city action plan economic modelling results. https://vancouver.ca/files/cov/energy-and-emissions-forecast-final-report.pdf
  21. 21 CleanBC. (2018). CleanBC: Clean British Columbia Climate Strategy (Technical Report). CleanBC. https://www2.gov.bc.ca/assets/gov/environment/climate-change/action/cleanbc/cleanbc_2018-bc-climate-strategy.pdf
  22. 22 Clemen, R. T., & Winkler, R. L. (1999). Combining probability distributions from experts in risk analysis. Risk Analysis, 19(2), 187203. DOI: 10.1023/A:1006917509560
  23. 23 Connor Properties Listing. (2019). Listing. https://connorproperties.ca/recip.html/222926.search/listing.r2331638-2925-waterloo-street-vancouver-v6r-3j4.82343753
  24. 24 Dahmen, J., von Bergmann, J., & Das, M. (2018). Teardown index: Impact of property values on carbon dioxide emissions of single family housing in Vancouver. Energy and Buildings, 170, 95106. DOI: 10.1016/j.enbuild.2018.03.012
  25. 25 Dessai, S., Bhave, A., Birch, C., Conway, D., Garcia-Carreras, L., Gosling, J. P., Mittal, N., & Stainforth, D. (2018). Building narratives to characterise uncertainty in regional climate change through expert elicitation. Environmental Research Letters, 13(7), 074005. DOI: 10.1088/1748-9326/aabcdd
  26. 26 Duah, D., Ford, K., & Syal, M. (2014). Expert knowledge elicitation for decision-making in home energy retrofits. Structural Survey, 32(5), 377395. DOI: 10.1108/SS-01-2014-0004
  27. 27 Environment and Climate Change Canada. (2017). Canada’s nationally determined contribution to UNFCCC. UNFCCC. https://www4.unfccc.int/sites/ndcstaging/PublishedDocuments/Canada%20First/Canada%20First%20NDC-Revised%20submission%202017-05-11.pdf
  28. 28 Environment and Climate Change Canada. (2019). Canada’s official greenhouse gas inventory [dataset]. https://open.canada.ca/data/en/dataset/779c7bcf-4982-47eb-af1b-a33618a05e5b
  29. 29 Feng, H., Liyanage, D. R., Karunathilake, H., Sadiq, R., & Hewage, K. (2020). BIM-based life cycle environmental performance assessment of single-family houses: Renovation and reconstruction strategies for aging building stock in British Columbia. Journal of Cleaner Production, 250, 119543. DOI: 10.1016/j.jclepro.2019.119543
  30. 30 Frappé-Sénéclauze, T.-P., Heerema, D., & Wu, K. T. (2017). Deep emissions reduction in the existing building stock: Key elements of a retrofit strategy for BC. Results from the November 2016 Thought Leader Forum (Technical Report). Pembina Institute. https://www.pembina.org/reports/retrofit-strategy-bc-report-2017.pdf
  31. 31 Gamtessa, S. F. (2013). An explanation of residential energy-efficiency retrofit behavior in Canada. Energy and Buildings, 57, 155164. DOI: 10.1016/j.enbuild.2012.11.006
  32. 32 Garthwaite, P. H., Kadane, J. B., & O’Hagan, A. (2005). Statistical methods for eliciting probability distributions. Journal of the American Statistical Association, 100(470), 680701. DOI: 10.1198/016214505000000105
  33. 33 Geekiyanage, D., & Ramachandra, T. (2020). Nexus between running costs and building characteristics of commercial buildings: Hedonic regression modelling. Built Environment Project and Asset Management, 10(3), 389406. DOI: 10.1108/BEPAM-12-2018-0156
  34. 34 Gonzalez-Caceres, A., Lassen, A. K., & Nielsen, T. R. (2020). Barriers and challenges of the recommendation list of measures under the EPBD scheme: A critical review. Energy and Buildings, 223, 110065. DOI: 10.1016/j.enbuild.2020.110065
  35. 35 Haines, V., & Mitchell, V. (2014). A persona-based approach to domestic energy retrofit. Building Research & Information, 42(4), 462476. DOI: 10.1080/09613218.2014.893161
  36. 36 Hrovatin, N., & Zorić, J. (2018). Determinants of energy-efficient home retrofits in Slovenia: The role of information sources. Energy and Buildings, 180, 4250. DOI: 10.1016/j.enbuild.2018.09.029
  37. 37 Jakob, M. (2007). The drivers of and barriers to energy efficiency in renovation decisions of single-family home-owners (Technical Report). ETH Zürich. https://cepe.ethz.ch/content/dam/ethz/special-interest/mtec/cepe/cepe-dam/documents/research/cepe-wp/CEPE_WP56.pdf
  38. 38 Judson, E. P., & Maller, C. (2014). Housing renovations and energy efficiency: Insights from homeowners’ practices. Building Research & Information, 42(4), 501511. DOI: 10.1080/09613218.2014.894808
  39. 39 Kahneman, D., & Tversky, A. (1982). Variants of uncertainty. Cognition, 11(2), 143157. DOI: 10.1016/0010-0277(82)90023-3
  40. 40 Kastner, I., & Stern, P. C. (2015). Examining the decision-making processes behind household energy investments: A review. Energy Research & Social Science, 10, 7289. DOI: 10.1016/j.erss.2015.07.008
  41. 41 Kendall, M. (1948). Rank correlation methods. Griffin. https://psycnet.apa.org/record/1948-15040-000
  42. 42 Kynn, M. (2008). The ‘heuristics and biases’ bias in expert elicitation. Journal of the Royal Statistical Society. Series A (Statistics in Society), 171(1), 239264. https://www.jstor.org/stable/30130739
  43. 43 Lam, J. C., & Hui, S. C. M. (1996). Sensitivity analysis of energy performance of office buildings. Building and Environment, 31(1), 2739. DOI: 10.1016/0360-1323(95)00031-3
  44. 44 Ma, Z., Cooper, P., Daly, D., & Ledo, L. (2012). Existing building retrofits: Methodology and state-of-the-art. Energy and Buildings, 55, 889902. DOI: 10.1016/j.enbuild.2012.08.018
  45. 45 Martin, T. G., Kuhnert, P. M., Mengersen, K., & Possingham, H. P. (2005). The power of expert opinion in ecological models using Bayesian methods: Impact of grazing on birds. Ecological Applications, 15(1), 266280. https://www.jstor.org/stable/4543351. DOI: 10.1890/03-5400
  46. 46 Mata, E., Sasic Kalagasidis, A., & Johnsson, F. (2014). Building-stock aggregation through archetype buildings: France, Germany, Spain and the UK. Building and Environment, 81, 270282. DOI: 10.1016/j.buildenv.2014.06.013
  47. 47 Mirzaee, S., Fannon, D., & Ruth, M. (2019). A comparison of preference elicitation methods for multi-criteria design decisions about resilient and sustainable buildings. Environment Systems and Decisions, 39(4), 439453. DOI: 10.1007/s10669-019-09726-2
  48. 48 Morgan, M. G. (2014). Use (and abuse) of expert elicitation in support of decision making for public policy. Proceedings of the National Academy of Sciences, USA, 111(20), 71767184. DOI: 10.1073/pnas.1319946111
  49. 49 Morgan, M. G., & Keith, D. W. (1995). Subjective judgments by climate experts. Environmental Science & Technology, 29(10), 468A476A. DOI: 10.1021/es00010a753
  50. 50 Nair, G., Gustavsson, L., & Mahapatra, K. (2010). Factors influencing energy efficiency investments in existing Swedish residential buildings. Energy Policy, 38(6), 29562963. DOI: 10.1016/j.enpol.2010.01.033
  51. 51 Palmer, K., Walls, M., Gordon, H., & Gerarden, T. (2013). Assessing the energy-efficiency information gap: Results from a survey of home energy auditors. Energy Efficiency, 6(2), 271292. DOI: 10.1007/s12053-012-9178-2
  52. 52 Pasichnyi, O., Wallin, J., & Kordas, O. (2019). Data-driven building archetypes for urban building energy modelling. Energy, 181, 360377. DOI: 10.1016/j.energy.2019.04.197
  53. 53 Prabatha, T., Hewage, K., Karunathilake, H., & Sadiq, R. (2020). To retrofit or not? Making energy retrofit decisions through life cycle thinking for Canadian residences. Energy and Buildings, 226, 110393. DOI: 10.1016/j.enbuild.2020.110393
  54. 54 Puth, M.-T., Neuhäuser, M., & Ruxton, G. D. (2015). Effective use of Spearman’s and Kendall’s correlation coefficients for association between two measured traits. Animal Behaviour, 102, 7784. DOI: 10.1016/j.anbehav.2015.01.010
  55. 55 Qualtrics. (2019). Qualtrics survey software 2019. https://www.qualtrics.com/blog/citing-qualtrics/
  56. 56 Rivers, N., & Jaccard, M. (2006). Useful models for simulating policies to induce technological change. Energy Policy, 34(15), 20382047. DOI: 10.1016/j.enpol.2005.02.003
  57. 57 Salter, J., Lu, Y., Kim, J. C., Kellett, R., Girling, C., Inomata, F., & Krahn, A. (2020). Iterative ‘what-if’ neighborhood simulation: Energy and emissions impacts. Buildings and Cities, 1(1), 293307. DOI: 10.5334/bc.51
  58. 58 Shadbolt, N. (2005). Eliciting expertise. In J. R. Wilson & N. Corlett (Eds.), Evaluation of human work, 3rd edn (pp. 185218). CRC Press. https://eprints.soton.ac.uk/264563/1/Elciting_Expertise.pdf. DOI: 10.1201/9781420055948.ch8
  59. 59 Statistics Canada. (2017). 2016 Census metropolitan area of Vancouver [dataset]. https://www12.statcan.gc.ca/census-recensement/2016/as-sa/fogs-spg/Facts-cma-eng.cfm?LANG=Eng&GK=CMA&GC=933&TOPIC=7
  60. 60 Sustainability Group, City of Vancouver. (2014, June). Energy retrofit strategy for existing buildings. Report to the City of Vancouver Standing Committee on Planning, Transportation and Environment. https://council.vancouver.ca/20140625/documents/ptec1.pdf
  61. 61 Szwed, P., Dorp, J. R. V., Merrick, J., Mazzuchi, T., & Singh, A. (2006). A Bayesian paired comparison approach for relative accident probability assessment with covariate information. European Journal of Operational Research, 169(1), 157177. DOI: 10.1016/j.ejor.2004.04.047
  62. 62 The Vancouver Heritage Foundation. (2018). Vancouver house styles hub. https://www.vancouverheritagefoundation.org/learn-with-us/discover-vancouvers-heritage/vancouver-house-styles/ (Library Catalog www.vancouverheritagefoundation.org).
  63. 63 The Vancouver Heritage Foundation. (2019). Heritage energy retrofit grant. https://www.vancouverheritagefoundation.org/get-a-grant/heritage-energy-retrofit-grant/
  64. 64 Tjørring, L., & Gausset, Q. (2019). Drivers for retrofit: A sociocultural approach to houses and inhabitants. Building Research & Information, 47(4), 394403. DOI: 10.1080/09613218.2018.1423722
  65. 65 Trotta, G. (2018). The determinants of energy efficient retrofit investments in the English residential sector. Energy Policy, 120, 175182. DOI: 10.1016/j.enpol.2018.05.024
  66. 66 Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and biases. Science, 185(4157), 11241131. DOI: 10.1126/science.185.4157.1124
  67. 67 Usher, W., & Strachan, N. (2013). An expert elicitation of climate, energy and economic uncertainties. Energy Policy, 61, 811821. DOI: 10.1016/j.enpol.2013.06.110
  68. 68 Verdolini, E., Anadon, L. D., Lu, J., & Nemet, G. F. (2015). The effects of expert selection, elicitation design, and R&D assumptions on experts’ estimates of the future costs of photovoltaics. Energy Policy, 80, 233243. DOI: 10.1016/j.enpol.2015.01.006
  69. 69 Vergragt, P. J., & Brown, H. S. (2020). The challenge of energy retrofitting the residential housing stock: Grassroots innovations and socio-technical system change in Worcester, MA. Technology Analysis & Strategic Management, 24(4), 407420. DOI: 10.1080/09537325.2012.663964
  70. 70 Wilson, C., Chryssochoidis, G., & Pettifor, H. (2011). Understanding homeowners’ renovation decisions: Findings of the VERD Project (Technical Report). UK Energy Research Centre. https://tyndall.ac.uk/sites/default/files/verd_summary_report_oct13.pdf
  71. 71 Wilson, C., Crane, L., & Chryssochoidis, G. (2015). Why do homeowners renovate energy efficiently? Contrasting perspectives and implications for policy. Energy Research & Social Science, 7, 1222. DOI: 10.1016/j.erss.2015.03.002
  72. 72 Wiser, R., Jenni, K., Seel, J., Baker, E., Hand, M., Lantz, E., & Smith, A. (2016). Expert elicitation survey on future wind energy costs. Nature Energy, 1(10), 18. DOI: 10.1038/nenergy.2016.135
  73. 73 Woudenberg, F. (1991). An evaluation of Delphi. Technological Forecasting and Social Change, 40(2), 131150. DOI: 10.1016/0040-1625(91)90002-W
  74. 74 Zahiri, S., & Elsharkawy, H. (2018). Towards energy-efficient retrofit of council housing in London: Assessing the impact of occupancy and energy-use patterns on building performance. Energy and Buildings, 174, 672681. DOI: 10.1016/j.enbuild.2018.07.010
DOI: https://doi.org/10.5334/bc.85 | Journal eISSN: 2632-6655
Language: English
Submitted on: Oct 26, 2020
Accepted on: Mar 12, 2021
Published on: Apr 12, 2021
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Justin McCarty, Alexandra Scott, Adam Rysanek, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.