Have a personal or library account? Click to login
Biogenic carbon in buildings: a critical overview of LCA methods Cover

Biogenic carbon in buildings: a critical overview of LCA methods

Open Access
|Aug 2020

References

  1. 1 Abergel, T., Dean, B., & Dulac, J. (2017). Towards a zero-emission, efficient, and resilient buildings and construction sector: Global status report 2017. UN Environment and International Energy Agency.
  2. 2 Brandão, M., Levasseur, A., Kirschbaum, M. U. F., Weidema, B. P., Cowie, A. L., Jørgensen, S. V., Hauschild, M. Z., Pennington, D. W., & Chomkhamsri, K. (2013). Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. International Journal of Life Cycle Assessment, 18, 230240. DOI: 10.1007/s11367-012-0451-6
  3. 3 BRE. (2013). Methodology for environmental profiles of construction products: Product category rules for type III environmental product declaration of construction products. IHS BRE Press.
  4. 4 Breton, C., Blanchet, P., Amor, B., Beauregard, R., & Chang, W. (2018). Assessing the climate change impacts of biogenic carbon in buildings: A critical review of two main dynamic approaches. Sustainability, 10(6), 130. DOI: 10.3390/su10062020
  5. 5 Cherubini, F., Peters, G. P., Berntsen, T., Strømman, A. H., & Hertwich, E. (2011). CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. GCB Bioenergy, 3(5), 413426. DOI: 10.1111/j.1757-1707.2011.01102.x
  6. 6 Churkina, G., Organschi, A., Reyer, C. P., Ruff, A., Vinke, K., Liu, Z., Reck, B. K., Graedel, T. E., & Schellnhuber, H. J. (2020). Buildings as a global carbon sink. Nature Sustainability, 3, 269276. DOI: 10.1038/s41893-019-0462-4
  7. 7 Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., & Jones, C. (2014). Carbon and other biogeochemical cycles. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465570). Cambridge University Press.
  8. 8 Draft EN-15804/prA2. (2017). Consolidated version (2017-11-23). European Committee for Standardization (CEN).
  9. 9 Drouilles, J., Aguacil, S., Hoxha, E., Jusselme, T., Lufkin, S., & Rey, E. (2019). Environmental impact assessment of Swiss residential archetypes: A comparison of construction and mobility scenarios. Energy Efficiency, 12(6), 16611689. DOI: 10.1007/s12053-019-09811-0
  10. 10 EC. (2013). PEF Guide—Annex II to Recommendation (2013/179/EU) and the product environmental footprint pilot guidance. Official Journal of the European Union, L124.
  11. 11 EC. (2017a). Guidance for the development of product environmental footprint category rules (PEFCRs), version 6.2. European Commission.
  12. 12 EC. (2017b). Guidance for the development of product environmental footprint category rules (PEFCRs), version 6.3. European Commission.
  13. 13 EN-15804. (2013). Construction, sustainability of construction works—Environmental product declarations—Core rules for the product category of construction products. European Committee for Standardization (CEN).
  14. 14 EN-15804. (2019). Sustainability of construction works—Environmental product declarations—Core rules for the product category of construction products. European Committee for Standardization (CEN).
  15. 15 EN-15978. (2011). Sustainability of construction works—Assessment of environmental performance of buildings—Calculation method. European Committee for Standardization (CEN).
  16. 16 EN-16449. (2014). Wood and wood-based products—Calculation of the biogenic carbon content of wood and conversion to carbon dioxide. European Committee for Standardization (CEN).
  17. 17 EN-16485. (2014). Round and sawn timber—Environmental product declarations—Product category rules for wood and wood-based products for use in construction. European Committee for Standardization (CEN).
  18. 18 EN-16757. (2017). Sustainability of construction works—Environmental product declarations—Product category rules for concrete and concrete elements. European Committee for Standardization (CEN).
  19. 19 Erb, K. H., Kastner, T., Plutzar, C., Bais, A. L. S., Carvalhais, N., Fetzel, T., Gingrich, S., Haberl, H., Lauk, C., Niedertscheider, M., & Pongratz, J. (2018). Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature, 553(7686), 7376. DOI: 10.1038/nature25138
  20. 20 Fouquet, M., Levasseur, A., Margni, M., Lebert, A., Lasvaux, S., Souyri, B., Buhé, C., & Woloszyn, M. (2015). Methodological challenges and developments in LCA of low energy buildings: Application to biogenic carbon and global warming assessment. Building and Environment, 90, 5159. DOI: 10.1016/j.buildenv.2015.03.022
  21. 21 Frischknecht, R. (2010). LCI modelling approaches applied on recycling of materials in view of environmental sustainability, risk perception and ecoefficiency. International Journal of Life Cycle Assessment, 15(7), 666671. DOI: 10.1007/s11367-010-0201-6
  22. 22 Guest, G., Cherubini, F., & Strømman, A. H. (2013). Global warming potential of carbon dioxide emissions from biomass stored in the anthroposphere and used for bioenergy at end of life. Journal of Industrial Ecology, 17, 2030. DOI: 10.1111/j.1530-9290.2012.00507.x
  23. 23 Habert, G. (2013). A method for allocation according to the economic behaviour in the EU-ETS for by-products used in cement industry. International Journal of Life Cycle Assessment, 18, 113126. DOI: 10.1007/s11367-012-0464-1
  24. 24 Häfliger, I. F., John, V., Passer, A., Lasvaux, S., Hoxha, E., Saade, M. R. M., & Habert, G. (2017). Buildings environmental impacts’ sensitivity related to LCA modelling choices of construction materials. Journal of Cleaner Production, 156, 805816. DOI: 10.1016/j.jclepro.2017.04.052
  25. 25 Hartmann, D. J., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y. A.-R., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., Kaplan, A., Soden, B. J., Thorne, P. W., Wild, M., & Zhai, P. (2013). Observations: Atmosphere and surface. In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 159254). Cambridge University Press.
  26. 26 Head, M., Levasseur, A., Beauregard, R., & Margni, M. (2020). Dynamic greenhouse gas life cycle inventory and impact profiles of wood used in Canadian buildings. Building and Environment, 173, 106751. DOI: 10.1016/j.buildenv.2020.106751
  27. 27 Hoxha, E., Habert, G., Chevalier, J., Bazzana, M., & Le Roy, R. (2014). Method to analyse the contribution of material’s sensitivity in buildings’ environmental impact. Journal of Cleaner Production, 66, 5464. DOI: 10.1016/j.jclepro.2013.10.056
  28. 28 Hoxha, E., Habert, G., Lasvaux, S., Chevalier, J., & Le Roy, R. (2017). Influence of construction material uncertainties on residential building LCA reliability. Journal of Cleaner Production, 144, 3347. DOI: 10.1016/j.jclepro.2016.12.068
  29. 29 Hoxha, E., & Jusselme, T. (2017). On the necessity of improving the environmental impacts of furniture and appliances in net-zero energy buildings. Science of the Total Environment, 596, 405416. DOI: 10.1016/j.scitotenv.2017.03.107
  30. 30 Hoxha, E., Jusselme, T., Andersen, M., & Rey, E. (2016). Introduction of a dynamic interpretation of building LCA results: The case of the Smart Living (Lab) building in Fribourg, Switzerland. In Proceedings of Sustainable Built Environment (SBE) Conference. Rf https://vdf.ch/expanding-boundaries.html
  31. 31 Hoxha, E., Liardet, C., & Jusselme, T. (2020). Office densification effects on comfort, energy, and carbon lifecycle performance: An integrated and exploratory study. Sustainable Cities and Society, 55, 102032. DOI: 10.1016/j.scs.2020.102032
  32. 32 ILCD. (2010). International reference life cycle data system (ILCD) Handbook—General guide for life cycle assessment—Detailed guidance. European Commission—Joint Research Centre—Institute for Environment and Sustainability/Publications Office of the European Union.
  33. 33 ISO-14067. (2018). Greenhouse gases—Carbon footprint of products—Requirements and guidelines for quantification. International Organization for Standardization (ISO).
  34. 34 ISO-14040. (2006). Environmental management—Life cycle assessment—Principles and framework. International Organization for Standardization (ISO).
  35. 35 ISO-14044. (2006). Environmental management—Life cycle assessment—Requirements and guidelines. International Organization for Standardization (ISO).
  36. 36 ISO-21930. (2017). Sustainability in buildings and civil engineering works—Core rules for environmental product declarations of construction products and services. International Organization for Standardization (ISO).
  37. 37 ISO/DIS-14067. (2018). Greenhouse gases—Carbon footprint of products—Requirements and guidelines for quantification. International Organization for Standardization (ISO).
  38. 38 Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G. K., Gerber, S., & Hasselmann, K. (2001). Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochemical Cycles, 15(4), 891907. DOI: 10.1029/2000GB001375
  39. 39 Kreiner, H., Passer, A., & Wallbaum, H. (2015). A new systemic approach to improve the sustainability performance of office buildings in the early design stage. Energy and Buildings, 109, 385396. DOI: 10.1016/j.enbuild.2015.09.040
  40. 40 Lasvaux, S., Achim, F., Garat, P., Peuportier, B., Chevalier, J., & Habert, G. (2016). Correlations in life cycle impact assessment methods (LCIA) and indicators for construction materials: What matters? Ecological Indicators, 67, 174182. DOI: 10.1016/j.ecolind.2016.01.056
  41. 41 Lasvaux, S., Lebert, A., Achim, F., Grannec, F., Hoxha, E., Nibel, S., Schiopu, N., & Chevalier, J. (2017). Towards guidance values for the environmental performance of buildings: Application to the statistical analysis of 40 low-energy single family houses’ LCA in France. International Journal of Life Cycle Assessment, 22(5), 657674. DOI: 10.1007/s11367-016-1253-z
  42. 42 Lasvaux, S., Schiopu, N., Habert, G., Chevalier, J., & Peuportier, B. (2014). Influence of simplification of life cycle inventories on the accuracy of impact assessment: Application to construction products. Journal of Cleaner Production, 79, 142151. DOI: 10.1016/j.jclepro.2014.06.003
  43. 43 Levasseur, A., Lesage, P., Margni, M., Deschênes, L., & Samson, R. (2010). Considering time in LCA: Dynamic LCA and its application to global warming impact assessments. Environmental Science & Technology, 44(8), 31693174. DOI: 10.1021/es9030003
  44. 44 Levasseur, A., Lesage, P., Margni, M., & Samson, R. (2013). Biogenic carbon and temporary storage addressed with dynamic life cycle assessment. Journal of Industrial Ecology, 17(1), 117128. DOI: 10.1111/j.1530-9290.2012.00503.x
  45. 45 Littell, J. H., Corcoran, J., & Pillai, V. (2008). Systematic reviews and meta-analysis. Oxford University Press. DOI: 10.1093/acprof:oso/9780195326543.001.0001
  46. 46 Lützkendorf, T., Balouktsi, M., & König, H. (2014). Ecological advantageousness of net-zero-energy buildings: Assessment methods. iiSBE Net Zero Built Environment (pp. 381392). Rf https://www.researchgate.net/profile/Hamed_Hakim/publication/322592351_iiSBE_NZ-BE_2014_Conference_Proceeding/links/5a6163c7aca272a158175281/iiSBE-NZ-BE-2014-Conference-Proceeding.pdf#page=384
  47. 47 Masera, O. R., Garza-Caligaris, J. F., Kanninen, M., Karjalainen, T., Liski, J., Nabuurs, G. J., Pussinen, A., de Jong, B. H., & Mohren, G. M. J. (2003). Modeling carbon sequestration in afforestation, agroforestry and forest management projects: The CO2FIX V.2 approach. Ecological Modelling, 164(2–3), 177199. DOI: 10.1016/S0304-3800(02)00419-2
  48. 48 Meex, E., Hollberg, A., Knapen, E., Hildebrand, L., & Verbeeck, G. (2018). Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Building and Environment, 133, 228236. DOI: 10.1016/j.buildenv.2018.02.016
  49. 49 Mehr, J., Vadenbo, C., Steubing, B., & Hellweg, S. (2018). Environmentally optimal wood use in Switzerland—Investigating the relevance of material cascades. Resources, Conservation and Recycling, 131, 181191. DOI: 10.1016/j.resconrec.2017.12.026
  50. 50 Mirabella, N., Röck, M., Ruschi Mendes Saade, M., Spirinckx, C., Bosmans, M., Allacker, K., & Passer, A. (2018). Strategies to improve the energy performance of buildings: A review of their life cycle impact. Buildings, 8, 118. DOI: 10.3390/buildings8080105
  51. 51 Müller, D. B., Bader, H. P., & Baccini, P. (2004). Long-term coordination of timber production and consumption using a dynamic material and energy flow analysis. Journal of Industrial Ecology, 8, 6588. DOI: 10.1162/1088198042442342
  52. 52 PAS 2050. (2011). Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. BSI System.
  53. 53 Passer, A., Balouktsi, M., Fischer, G., John, V., Habert, G., Röck, M., & Hinterbrandner, A. (2016a). IEA EBC Annex 57: Guidelines for construction product manufacturers. International Energy Agency. http://doi.org/10.3217/978-3-85125-519-5
  54. 54 Passer, A., Habert, G., Kromp-Kolb, H., Lützkendorf, T., & Monsberger, M. (2019). Transition towards a net zero carbon built environment. International Journal of Life Cycle Assessment, 24, 362363. DOI: 10.1007/s11367-018-1550-9
  55. 55 Passer, A., Kreiner, H., & Maydl, P. (2012). Assessment of the environmental performance of buildings: A critical evaluation of the influence of technical building equipment on residential buildings. International Journal of Life Cycle Assessment, 17(9), 11161130. DOI: 10.1007/s11367-012-0435-6
  56. 56 Passer, A., Lasvaux, S., Allacker, K., De Lathauwer, D., Spirinckx, C., Wittstock, B., Kellenberger, D., Gschösser, F., Wall, J., & Wallbaum, H. (2015). Environmental product declarations entering the building sector: Critical reflections based on 5 to 10 years’ experience in different European countries. International Journal of Life Cycle Assessment, 20, 11991212. DOI: 10.1007/s11367-015-0926-3
  57. 57 Passer, A., Ouellet-Plamondon, C., Kenneally, P., John, V., & Habert, G. (2016b). The impact of future scenarios on building refurbishment strategies towards plus energy buildings. Energy and Buildings, 124, 153163. DOI: 10.1016/j.enbuild.2016.04.008
  58. 58 Peñaloza, D., Erlandsson, M., & Falk, A. (2016). Exploring the climate impact effects of increased use of bio-based materials in buildings. Construction and Building Materials, 125, 219226. DOI: 10.1016/j.conbuildmat.2016.08.041
  59. 59 Pittau, F., Krause, F., Lumia, G., & Habert, G. (2018). Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Building and Environment, 129, 117129. DOI: 10.1016/j.buildenv.2017.12.006
  60. 60 Pomponi, F., & Moncaster, A. (2016). Embodied carbon mitigation and reduction in the built environment—What does the evidence say? Journal of Environmental Management, 181, 687700. DOI: 10.1016/j.jenvman.2016.08.036
  61. 61 Pré Consultants. (2018). SimaPro Database 8.4.
  62. 62 Röck, M., Saade, M. R. M., Balouktsi, M., Rasmussen, F. N., Birgisdottir, H., Frischknecht, R., Habert, G., Lützkendorf, T., & Passer, A. (2020). Embodied GHG emissions of buildings—The hidden challenge for effective climate change mitigation. Applied Energy, 258, 114107. DOI: 10.1016/j.apenergy.2019.114107
  63. 63 Sandin, G., Peters, G. M., & Svanström, M. (2014). Life cycle assessment of construction materials: The influence of assumptions in end-of-life modelling. International Journal of Life Cycle Assessment, 19, 723731. DOI: 10.1007/s11367-013-0686-x
  64. 64 Shine, K. P., Berntsen, T. K., Fuglestvedt, J. S., Skeie, R. B., & Stuber, N. (2007). Comparing the climate effect of emissions of short- and long-lived climate agents. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1856), 19031914. DOI: 10.1098/rsta.2007.2050
  65. 65 Staller, H., Heimrath, R., Kreiner, H., & Passer, A. (2016). +ERS-Plus Energy Network Reininghaus South: Towards a plus energy settlement. In Central Europe towards Sustainable Building. Retrieved from https://graz.pure.elsevier.com/en/publications/ers-plus-energy-network-reininghaus-south-towards-a-plus-energy-s
  66. 66 Staller, H., Rainer, E., Heimrath, R., Halmdienst, C., Martín, C. V., & Grabner, M. (2015). +ERS-Plus Energy Network Reininghaus Süd: A pilot project towards an energy self-sufficient urban district, Graz. Energy and Buildings, 115, 138147. DOI: 10.1016/j.enbuild.2015.06.049
  67. 67 Taverna, R., Hofer, P., Werner, F., Kaufmann, E., & Thürig, E. (2007). The CO2 effects of the Swiss forestry and timber industry. Scenarios of future potential for climate-change mitigation. Federal Office for the Environment (FOEN).
  68. 68 Timma, L., Dace, E., & Trydeman Knudsen, M. (2020). Temporal aspects in emission accounting—Case study of agriculture sector. Energies, 13(4), 121. DOI: 10.3390/en13040800
  69. 69 Vogtländer, J. G., van der Velden, N. M., & van der Lugt, P. (2014). Carbon sequestration in LCA, a proposal for a new approach based on the global carbon cycle; cases on wood and on bamboo. International Journal of Life Cycle Assessment, 19(1), 1323. DOI: 10.1007/s11367-013-0629-6
  70. 70 Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): Overview and methodology. International Journal of Life Cycle Assessment, 21, 12181230. DOI: 10.1007/s11367-016-1087-8
  71. 71 WGBC. (2019). Bringing embodied carbon upfront: Coordinated action for the building and construction sector to tackle embodied carbon. World Green Building Council. Retrieved from https://www.worldgbc.org/sites/default/files/WorldGBC_Bringing_Embodied_Carbon_Upfront.pdf
  72. 72 Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication in software engineering (Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering—EASE ’14) (pp. 110). ACM Press. DOI: 10.1145/2601248.2601268
DOI: https://doi.org/10.5334/bc.46 | Journal eISSN: 2632-6655
Language: English
Submitted on: Feb 4, 2020
Accepted on: Jul 17, 2020
Published on: Aug 12, 2020
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2020 Endrit Hoxha, Alexander Passer, Marcella Ruschi Mendes Saade, Damien Trigaux, Amie Shuttleworth, Francesco Pittau, Karen Allacker, Guillaume Habert, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.