References
- 1 Abergel, T., Dean, B., & Dulac, J. (2017). Towards a zero-emission, efficient, and resilient buildings and construction sector: Global status report 2017. UN Environment and International Energy Agency.
- 2 Brandão, M., Levasseur, A., Kirschbaum, M. U. F., Weidema, B. P., Cowie, A. L., Jørgensen, S. V., Hauschild, M. Z., Pennington, D. W., & Chomkhamsri, K. (2013). Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. International Journal of Life Cycle Assessment, 18, 230–240. DOI: 10.1007/s11367-012-0451-6
- 3 BRE. (2013). Methodology for environmental profiles of construction products: Product category rules for type III environmental product declaration of construction products. IHS BRE Press.
- 4 Breton, C., Blanchet, P., Amor, B., Beauregard, R., & Chang, W. (2018). Assessing the climate change impacts of biogenic carbon in buildings: A critical review of two main dynamic approaches. Sustainability, 10(6), 1–30. DOI: 10.3390/su10062020
- 5 Cherubini, F., Peters, G. P., Berntsen, T., Strømman, A. H., & Hertwich, E. (2011). CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. GCB Bioenergy, 3(5), 413–426. DOI: 10.1111/j.1757-1707.2011.01102.x
- 6 Churkina, G., Organschi, A., Reyer, C. P., Ruff, A., Vinke, K., Liu, Z., Reck, B. K., Graedel, T. E., & Schellnhuber, H. J. (2020). Buildings as a global carbon sink. Nature Sustainability, 3, 269–276. DOI: 10.1038/s41893-019-0462-4
-
7
Ciais,
P.,
Sabine,
C.,
Bala,
G.,
Bopp,
L.,
Brovkin,
V.,
Canadell,
J.,
Chhabra,
A.,
DeFries,
R.,
Galloway,
J.,
Heimann,
M., &
Jones,
C. (2014).
Carbon and other biogeochemical cycles . In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465–570). Cambridge University Press. - 8 Draft EN-15804/prA2. (2017). Consolidated version (2017-11-23). European Committee for Standardization (CEN).
- 9 Drouilles, J., Aguacil, S., Hoxha, E., Jusselme, T., Lufkin, S., & Rey, E. (2019). Environmental impact assessment of Swiss residential archetypes: A comparison of construction and mobility scenarios. Energy Efficiency, 12(6), 1661–1689. DOI: 10.1007/s12053-019-09811-0
- 10 EC. (2013). PEF Guide—Annex II to Recommendation (2013/179/EU) and the product environmental footprint pilot guidance. Official Journal of the European Union, L124.
- 11 EC. (2017a). Guidance for the development of product environmental footprint category rules (PEFCRs), version 6.2. European Commission.
- 12 EC. (2017b). Guidance for the development of product environmental footprint category rules (PEFCRs), version 6.3. European Commission.
- 13 EN-15804. (2013). Construction, sustainability of construction works—Environmental product declarations—Core rules for the product category of construction products. European Committee for Standardization (CEN).
- 14 EN-15804. (2019). Sustainability of construction works—Environmental product declarations—Core rules for the product category of construction products. European Committee for Standardization (CEN).
- 15 EN-15978. (2011). Sustainability of construction works—Assessment of environmental performance of buildings—Calculation method. European Committee for Standardization (CEN).
- 16 EN-16449. (2014). Wood and wood-based products—Calculation of the biogenic carbon content of wood and conversion to carbon dioxide. European Committee for Standardization (CEN).
- 17 EN-16485. (2014). Round and sawn timber—Environmental product declarations—Product category rules for wood and wood-based products for use in construction. European Committee for Standardization (CEN).
- 18 EN-16757. (2017). Sustainability of construction works—Environmental product declarations—Product category rules for concrete and concrete elements. European Committee for Standardization (CEN).
- 19 Erb, K. H., Kastner, T., Plutzar, C., Bais, A. L. S., Carvalhais, N., Fetzel, T., Gingrich, S., Haberl, H., Lauk, C., Niedertscheider, M., & Pongratz, J. (2018). Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature, 553(7686), 73–76. DOI: 10.1038/nature25138
- 20 Fouquet, M., Levasseur, A., Margni, M., Lebert, A., Lasvaux, S., Souyri, B., Buhé, C., & Woloszyn, M. (2015). Methodological challenges and developments in LCA of low energy buildings: Application to biogenic carbon and global warming assessment. Building and Environment, 90, 51–59. DOI: 10.1016/j.buildenv.2015.03.022
- 21 Frischknecht, R. (2010). LCI modelling approaches applied on recycling of materials in view of environmental sustainability, risk perception and ecoefficiency. International Journal of Life Cycle Assessment, 15(7), 666–671. DOI: 10.1007/s11367-010-0201-6
- 22 Guest, G., Cherubini, F., & Strømman, A. H. (2013). Global warming potential of carbon dioxide emissions from biomass stored in the anthroposphere and used for bioenergy at end of life. Journal of Industrial Ecology, 17, 20–30. DOI: 10.1111/j.1530-9290.2012.00507.x
- 23 Habert, G. (2013). A method for allocation according to the economic behaviour in the EU-ETS for by-products used in cement industry. International Journal of Life Cycle Assessment, 18, 113–126. DOI: 10.1007/s11367-012-0464-1
- 24 Häfliger, I. F., John, V., Passer, A., Lasvaux, S., Hoxha, E., Saade, M. R. M., & Habert, G. (2017). Buildings environmental impacts’ sensitivity related to LCA modelling choices of construction materials. Journal of Cleaner Production, 156, 805–816. DOI: 10.1016/j.jclepro.2017.04.052
-
25
Hartmann,
D. J.,
Klein Tank, A. M.
G.,
Rusticucci,
M.,
Alexander, L.
V.,
Brönnimann,
S.,
Charabi, Y.
A.-R.,
Dentener, F.
J.,
Dlugokencky, E.
J.,
Easterling, D.
R., Kaplan,
A.,
Soden, B.
J., Thorne,
P. W.,
Wild,
M., &
Zhai,
P. (2013).
Observations: Atmosphere and surface . In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 159–254). Cambridge University Press. - 26 Head, M., Levasseur, A., Beauregard, R., & Margni, M. (2020). Dynamic greenhouse gas life cycle inventory and impact profiles of wood used in Canadian buildings. Building and Environment, 173, 106751. DOI: 10.1016/j.buildenv.2020.106751
- 27 Hoxha, E., Habert, G., Chevalier, J., Bazzana, M., & Le Roy, R. (2014). Method to analyse the contribution of material’s sensitivity in buildings’ environmental impact. Journal of Cleaner Production, 66, 54–64. DOI: 10.1016/j.jclepro.2013.10.056
- 28 Hoxha, E., Habert, G., Lasvaux, S., Chevalier, J., & Le Roy, R. (2017). Influence of construction material uncertainties on residential building LCA reliability. Journal of Cleaner Production, 144, 33–47. DOI: 10.1016/j.jclepro.2016.12.068
- 29 Hoxha, E., & Jusselme, T. (2017). On the necessity of improving the environmental impacts of furniture and appliances in net-zero energy buildings. Science of the Total Environment, 596, 405–416. DOI: 10.1016/j.scitotenv.2017.03.107
-
30
Hoxha,
E.,
Jusselme,
T.,
Andersen,
M., &
Rey,
E. (2016).
Introduction of a dynamic interpretation of building LCA
results: The case of the Smart Living (Lab) building in Fribourg,
Switzerland. In Proceedings of Sustainable Built
Environment (SBE) Conference. Rf
https://vdf.ch/expanding-boundaries.html - 31 Hoxha, E., Liardet, C., & Jusselme, T. (2020). Office densification effects on comfort, energy, and carbon lifecycle performance: An integrated and exploratory study. Sustainable Cities and Society, 55, 102032. DOI: 10.1016/j.scs.2020.102032
- 32 ILCD. (2010). International reference life cycle data system (ILCD) Handbook—General guide for life cycle assessment—Detailed guidance. European Commission—Joint Research Centre—Institute for Environment and Sustainability/Publications Office of the European Union.
- 33 ISO-14067. (2018). Greenhouse gases—Carbon footprint of products—Requirements and guidelines for quantification. International Organization for Standardization (ISO).
- 34 ISO-14040. (2006). Environmental management—Life cycle assessment—Principles and framework. International Organization for Standardization (ISO).
- 35 ISO-14044. (2006). Environmental management—Life cycle assessment—Requirements and guidelines. International Organization for Standardization (ISO).
- 36 ISO-21930. (2017). Sustainability in buildings and civil engineering works—Core rules for environmental product declarations of construction products and services. International Organization for Standardization (ISO).
- 37 ISO/DIS-14067. (2018). Greenhouse gases—Carbon footprint of products—Requirements and guidelines for quantification. International Organization for Standardization (ISO).
- 38 Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G. K., Gerber, S., & Hasselmann, K. (2001). Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochemical Cycles, 15(4), 891–907. DOI: 10.1029/2000GB001375
- 39 Kreiner, H., Passer, A., & Wallbaum, H. (2015). A new systemic approach to improve the sustainability performance of office buildings in the early design stage. Energy and Buildings, 109, 385–396. DOI: 10.1016/j.enbuild.2015.09.040
- 40 Lasvaux, S., Achim, F., Garat, P., Peuportier, B., Chevalier, J., & Habert, G. (2016). Correlations in life cycle impact assessment methods (LCIA) and indicators for construction materials: What matters? Ecological Indicators, 67, 174–182. DOI: 10.1016/j.ecolind.2016.01.056
- 41 Lasvaux, S., Lebert, A., Achim, F., Grannec, F., Hoxha, E., Nibel, S., Schiopu, N., & Chevalier, J. (2017). Towards guidance values for the environmental performance of buildings: Application to the statistical analysis of 40 low-energy single family houses’ LCA in France. International Journal of Life Cycle Assessment, 22(5), 657–674. DOI: 10.1007/s11367-016-1253-z
- 42 Lasvaux, S., Schiopu, N., Habert, G., Chevalier, J., & Peuportier, B. (2014). Influence of simplification of life cycle inventories on the accuracy of impact assessment: Application to construction products. Journal of Cleaner Production, 79, 142–151. DOI: 10.1016/j.jclepro.2014.06.003
- 43 Levasseur, A., Lesage, P., Margni, M., Deschênes, L., & Samson, R. (2010). Considering time in LCA: Dynamic LCA and its application to global warming impact assessments. Environmental Science & Technology, 44(8), 3169–3174. DOI: 10.1021/es9030003
- 44 Levasseur, A., Lesage, P., Margni, M., & Samson, R. (2013). Biogenic carbon and temporary storage addressed with dynamic life cycle assessment. Journal of Industrial Ecology, 17(1), 117–128. DOI: 10.1111/j.1530-9290.2012.00503.x
- 45 Littell, J. H., Corcoran, J., & Pillai, V. (2008). Systematic reviews and meta-analysis. Oxford University Press. DOI: 10.1093/acprof:oso/9780195326543.001.0001
-
46
Lützkendorf,
T.,
Balouktsi,
M., &
König,
H. (2014).
Ecological advantageousness of net-zero-energy buildings:
Assessment methods. iiSBE Net Zero Built
Environment (pp. 381–392).
Rf
https://www.researchgate.net/profile/Hamed_Hakim/publication/322592351_iiSBE_NZ-BE_2014_Conference_Proceeding/links/5a6163c7aca272a158175281/iiSBE-NZ-BE-2014-Conference-Proceeding.pdf#page=384 - 47 Masera, O. R., Garza-Caligaris, J. F., Kanninen, M., Karjalainen, T., Liski, J., Nabuurs, G. J., Pussinen, A., de Jong, B. H., & Mohren, G. M. J. (2003). Modeling carbon sequestration in afforestation, agroforestry and forest management projects: The CO2FIX V.2 approach. Ecological Modelling, 164(2–3), 177–199. DOI: 10.1016/S0304-3800(02)00419-2
- 48 Meex, E., Hollberg, A., Knapen, E., Hildebrand, L., & Verbeeck, G. (2018). Requirements for applying LCA-based environmental impact assessment tools in the early stages of building design. Building and Environment, 133, 228–236. DOI: 10.1016/j.buildenv.2018.02.016
- 49 Mehr, J., Vadenbo, C., Steubing, B., & Hellweg, S. (2018). Environmentally optimal wood use in Switzerland—Investigating the relevance of material cascades. Resources, Conservation and Recycling, 131, 181–191. DOI: 10.1016/j.resconrec.2017.12.026
- 50 Mirabella, N., Röck, M., Ruschi Mendes Saade, M., Spirinckx, C., Bosmans, M., Allacker, K., & Passer, A. (2018). Strategies to improve the energy performance of buildings: A review of their life cycle impact. Buildings, 8, 1–18. DOI: 10.3390/buildings8080105
- 51 Müller, D. B., Bader, H. P., & Baccini, P. (2004). Long-term coordination of timber production and consumption using a dynamic material and energy flow analysis. Journal of Industrial Ecology, 8, 65–88. DOI: 10.1162/1088198042442342
- 52 PAS 2050. (2011). Specification for the assessment of the life cycle greenhouse gas emissions of goods and services. BSI System.
-
53
Passer,
A.,
Balouktsi,
M.,
Fischer,
G.,
John,
V.,
Habert,
G.,
Röck,
M., &
Hinterbrandner,
A. (2016a).
IEA EBC Annex 57: Guidelines for construction product
manufacturers. International Energy
Agency.
http://doi.org/10.3217/978-3-85125-519-5 - 54 Passer, A., Habert, G., Kromp-Kolb, H., Lützkendorf, T., & Monsberger, M. (2019). Transition towards a net zero carbon built environment. International Journal of Life Cycle Assessment, 24, 362–363. DOI: 10.1007/s11367-018-1550-9
- 55 Passer, A., Kreiner, H., & Maydl, P. (2012). Assessment of the environmental performance of buildings: A critical evaluation of the influence of technical building equipment on residential buildings. International Journal of Life Cycle Assessment, 17(9), 1116–1130. DOI: 10.1007/s11367-012-0435-6
- 56 Passer, A., Lasvaux, S., Allacker, K., De Lathauwer, D., Spirinckx, C., Wittstock, B., Kellenberger, D., Gschösser, F., Wall, J., & Wallbaum, H. (2015). Environmental product declarations entering the building sector: Critical reflections based on 5 to 10 years’ experience in different European countries. International Journal of Life Cycle Assessment, 20, 1199–1212. DOI: 10.1007/s11367-015-0926-3
- 57 Passer, A., Ouellet-Plamondon, C., Kenneally, P., John, V., & Habert, G. (2016b). The impact of future scenarios on building refurbishment strategies towards plus energy buildings. Energy and Buildings, 124, 153–163. DOI: 10.1016/j.enbuild.2016.04.008
- 58 Peñaloza, D., Erlandsson, M., & Falk, A. (2016). Exploring the climate impact effects of increased use of bio-based materials in buildings. Construction and Building Materials, 125, 219–226. DOI: 10.1016/j.conbuildmat.2016.08.041
- 59 Pittau, F., Krause, F., Lumia, G., & Habert, G. (2018). Fast-growing bio-based materials as an opportunity for storing carbon in exterior walls. Building and Environment, 129, 117–129. DOI: 10.1016/j.buildenv.2017.12.006
- 60 Pomponi, F., & Moncaster, A. (2016). Embodied carbon mitigation and reduction in the built environment—What does the evidence say? Journal of Environmental Management, 181, 687–700. DOI: 10.1016/j.jenvman.2016.08.036
- 61 Pré Consultants. (2018). SimaPro Database 8.4.
-
62
Röck,
M.,
Saade, M. R.
M.,
Balouktsi,
M.,
Rasmussen, F.
N.,
Birgisdottir,
H.,
Frischknecht,
R.,
Habert,
G.,
Lützkendorf,
T., &
Passer,
A. (2020).
Embodied GHG emissions of buildings—The hidden
challenge for effective climate change mitigation.
Applied Energy, 258,
114107 . DOI: 10.1016/j.apenergy.2019.114107 - 63 Sandin, G., Peters, G. M., & Svanström, M. (2014). Life cycle assessment of construction materials: The influence of assumptions in end-of-life modelling. International Journal of Life Cycle Assessment, 19, 723–731. DOI: 10.1007/s11367-013-0686-x
- 64 Shine, K. P., Berntsen, T. K., Fuglestvedt, J. S., Skeie, R. B., & Stuber, N. (2007). Comparing the climate effect of emissions of short- and long-lived climate agents. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1856), 1903–1914. DOI: 10.1098/rsta.2007.2050
-
65
Staller,
H.,
Heimrath,
R.,
Kreiner,
H., &
Passer,
A. (2016).
+ERS-Plus Energy Network Reininghaus South: Towards a plus
energy settlement. In Central Europe towards
Sustainable Building. Retrieved from
https://graz.pure.elsevier.com/en/publications/ers-plus-energy-network-reininghaus-south-towards-a-plus-energy-s - 66 Staller, H., Rainer, E., Heimrath, R., Halmdienst, C., Martín, C. V., & Grabner, M. (2015). +ERS-Plus Energy Network Reininghaus Süd: A pilot project towards an energy self-sufficient urban district, Graz. Energy and Buildings, 115, 138–147. DOI: 10.1016/j.enbuild.2015.06.049
- 67 Taverna, R., Hofer, P., Werner, F., Kaufmann, E., & Thürig, E. (2007). The CO2 effects of the Swiss forestry and timber industry. Scenarios of future potential for climate-change mitigation. Federal Office for the Environment (FOEN).
- 68 Timma, L., Dace, E., & Trydeman Knudsen, M. (2020). Temporal aspects in emission accounting—Case study of agriculture sector. Energies, 13(4), 1–21. DOI: 10.3390/en13040800
- 69 Vogtländer, J. G., van der Velden, N. M., & van der Lugt, P. (2014). Carbon sequestration in LCA, a proposal for a new approach based on the global carbon cycle; cases on wood and on bamboo. International Journal of Life Cycle Assessment, 19(1), 13–23. DOI: 10.1007/s11367-013-0629-6
- 70 Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): Overview and methodology. International Journal of Life Cycle Assessment, 21, 1218–1230. DOI: 10.1007/s11367-016-1087-8
-
71
WGBC.
(2019). Bringing embodied carbon upfront: Coordinated
action for the building and construction sector to tackle embodied
carbon. World Green Building
Council. Retrieved from
https://www.worldgbc.org/sites/default/files/WorldGBC_Bringing_Embodied_Carbon_Upfront.pdf -
72
Wohlin,
C. (2014).
Guidelines for snowballing in systematic literature studies and a
replication in software engineering (Proceedings of the
18th International Conference on Evaluation and Assessment in Software
Engineering—EASE ’14) (pp.
1–10).
ACM Press . DOI: 10.1145/2601248.2601268
