References
- 1Helbing D, Frey BS, Gigerenzer G, et al.
Will democracy survive big data and artificial intelligence? Towards digital enlightenment. Springer. 2019; 73–98. DOI: 10.1007/978-3-319-90869-4_7 - 2Naudé W. Artificial intelligence vs COVID-19: limitations, constraints and pitfalls. AI & Society. 2020; 35: 761–765. DOI: 10.1007/s00146-020-00978-0
- 3Buchanan BG. A (very) brief history of artificial intelligence. AI Magazine. 2005; 26(4): 53–53.
- 4Danneels E. Disruptive technology reconsidered: A critique and research agenda. Journal of Product Innovation Management. 2004; 21(4): 246–258. DOI: 10.1111/j.0737-6782.2004.00076.x
- 5Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, Yu B. Interpretable machine learning: Definitions, methods, and applications. arXiv preprint arXiv:190104592. 2019.
- 6Murray NM, Unberath M, Hager GD, Hui FK. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: A systematic review. Journal of Neurointerventional Surgery. 2020; 12(2): 156–164. DOI: 10.1136/neurintsurg-2019-015135
- 7Carter SM, Rogers W, Win KT, Frazer H, Richards B, Houssami N. The ethical, legal and social implications of using artificial intelligence systems in breast cancer care. The Breast. 2020; 49: 25–32. DOI: 10.1016/j.breast.2019.10.001
- 8Marka A, Carter JB, Toto E, Hassanpour S. Automated detection of nonmelanoma skin cancer using digital images: A systematic review. BMC Medical Imaging. 2019; 19(1): 21. DOI: 10.1186/s12880-019-0307-7
- 9Dubey AK, Gupta U, Jain S. Epidemiology of lung cancer and approaches for its prediction: A systematic review and analysis. Chinese Journal of Cancer. 2016; 35(1): 71. DOI: 10.1186/s40880-016-0135-x
- 10Université de Montréal. Montreal Declaration for Responsible AI.
https://www.montrealdeclaration-responsibleai.com/the-declaration . Accessed: 2 March 2020; 2017. - 11Floridi L, Cowls J, Beltrametti M, et al. AI4People—An ethical framework for a good AI society: Opportunities, risks, principles, and recommendations. Minds and Machines. 2018; 28(4): 689–707. DOI: 10.1007/s11023-018-9482-5
- 12Chui M, Harrysson M, Manyika J, et al.
Applying Artificial Intelligence for Social Good .https://www.mckinsey.com/featured-insights/artificial-intelligence/applying-artificial-intelligence-for-social-good# : McKinsey & Company; December 2018. - 13Zumla A, Petersen E. The historic and unprecedented United Nations General Assembly High Level Meeting on Tuberculosis (UNGA-HLM-TB)—‘United to End TB: An Urgent Global Response to a Global Epidemic’. International Journal of Infectious Diseases. 2018; 75: 118–120. DOI: 10.1016/j.ijid.2018.09.017
- 14Shiraishi J, Li Q, Appelbaum D, Doi K. Computer-aided diagnosis and artificial intelligence in clinical imaging. Seminars in Nuclear Medicine. 2011; 41(6): 449–462. DOI: 10.1053/j.semnuclmed.2011.06.004
- 15Liang C-H, Liu Y-C, Wu M-T, Garcia-Castro F, Alberich-Bayarri A, Wu F-Z. Identifying pulmonary nodules or masses on chest radiography using deep learning: External validation and strategies to improve clinical practice. Clinical Radiology. 2020; 75(1): 38–45. DOI: 10.1016/j.crad.2019.08.005
- 16Maduskar P, Muyoyeta M, Ayles H, Hogeweg L, Peters-Bax L, van Ginneken B. Detection of tuberculosis using digital chest radiography: Automated reading vs. interpretation by clinical officers. The International Journal of Tuberculosis and Lung Disease. 2013; 17(12): 1613–1620. DOI: 10.5588/ijtld.13.0325
- 17Harris M, Qi A, Jeagal L, et al. A systematic review of the diagnostic accuracy of artificial intelligence-based computer programs to analyze chest x-rays for pulmonary tuberculosis. PloS One. 2019; 14(9). DOI: 10.1371/journal.pone.0221339
- 18Park HH, Girdler-Brown BV, Churchyard GJ, White NW, Ehrlich RI. Incidence of tuberculosis and HIV and progression of silicosis and lung function impairment among former Basotho gold miners. American Journal of Industrial Medicine. 2009; 52(12): 901–908. DOI: 10.1002/ajim.20767
- 19Murray J, Davies T, Rees D. Occupational lung disease in the South African mining industry: research and policy implementation. Journal of Public Health Policy. 2011; 32(1): S65–S79. DOI: 10.1057/jphp.2011.25
- 20Stuckler D, Steele S, Lurie M, Basu S. Introduction: ‘Dying for gold’: The effects of mineral mining on HIV, tuberculosis, silicosis, and occupational diseases in Southern Africa. International Journal of Health Services. 2013; 43(4): 639–649. DOI: 10.2190/HS.43.4.c
- 21Rees D, Murray J, Nelson G, Sonnenberg P. Oscillating migration and the epidemics of silicosis, tuberculosis, and HIV infection in South African gold miners. American Journal of Industrial Medicine. 2010; 53(4): 398–404. DOI: 10.1002/ajim.20716
- 22Smith J, Blom P. Those who don’t return: improving efforts to address tuberculosis among former miners in Southern Africa. New Solutions: A Journal of Environmental and Occupational Health Policy. 2019; 29(1): 76–104. DOI: 10.1177/1048291119832082
- 23Ehrlich R, Akugizibwe P, Siegfried N, Rees D. Silica exposure, silicosis and tuberculosis – a systematic review. BMC Public Health. 2021 in press. DOI: 10.1186/s12889-021-10711-1
- 24Hnizdo E, Murray J. Risk of pulmonary tuberculosis relative to silicosis and exposure to silica dust in South African gold miners. Occupational and Environmental Medicine. 1998; 55(7): 496–502. DOI: 10.1136/oem.55.7.496
- 25Solomon A. Silicosis and tuberculosis: Part 2—a radiographic presentation of nodular tuberculosis and silicosis. International Journal of Occupational and Environmental Health. 2001; 7(1): 54–57. DOI: 10.1179/oeh.2001.7.1.54
- 26Stuckler D, Basu S, McKee M, Lurie M. Mining and risk of tuberculosis in sub-Saharan Africa. American Journal of Public Health. 2011; 101(3): 524–530. DOI: 10.2105/AJPH.2009.175646
- 27Ehrlich R. A century of miners’ compensation in South Africa. American Journal of Industrial Medicine. 2012; 55(6): 560–569. DOI: 10.1002/ajim.22030
- 28Maboso B, Moyo D, Muteba K, et al. Burden of disease among Basotho ex-miners in a large out-reach medical assessment programme. Occupational Health Southern Africa. 2020; 26(4): 145–152.
- 29Kistnasamy B, Yassi A, Yu J, et al. Tackling injustices of occupational lung disease acquired in South African mines: Recent developments and ongoing challenges. Globalization and Health. 2018; 14(60). DOI: 10.1186/s12992-018-0399-9
- 30Tshiamiso Trust. Tshiamiso Trust.
https://www.tshiamisotrust.com2021 . Accessed March 5, 2021. - 31Young C, Barker S, Ehrlich R, Kistnasamy B, Yassi A. Computer-aided detection for tuberculosis and silicosis in chest radiographs of gold miners of South Africa. International Journal of TB and Lung Diseases. 2020; 24: 444–451. DOI: 10.5588/ijtld.19.0624
- 32Laney A, Pontali E. Computer-assisted interpretation of chest radiographs: Signs of hope for silicosis and tuberculosis. The International Journal of Tuberculosis and Lung Disease. 2020; 24(4): 362–363. DOI: 10.5588/ijtld.19.0805
- 33Yassi A, Spiegel J, Barker S. Improving efficiency of assessing (ex)miners for tuberculosis (TB) and silicosis: Innovations to promote social justice.
http://med-fom-ghrp-spph.sites.olt.ubc.ca/files/2021/05/May-5th-2021-ayFinal.pdf . Accessed May 5, 2021. - 34Liu V, Musen MA, Chou T. Data breaches of protected health information in the United States. JAMA: The Journal of the American Medical Association. 2015; 313(14): 1471–1473. DOI: 10.1001/jama.2015.2252
- 35Canadian Association of Radiologists Artificial Intelligence Working Group. Canadian Association of Radiologists white paper on ethical and legal issues related to artificial intelligence in radiology. Canadian Association of Radiologists’ Journal. 2019; 70(2): 107–118. DOI: 10.1016/j.carj.2019.03.001
- 36Beauchamp T, Childress J. Principles of Biomedical Ethics, 7th Edition. New York, NY: Oxford University Press; 2013.
- 37Koplan JP, Bond TC, Merson MH, et al. Towards a common definition of global health. The Lancet. 2009; 373(9679): 1993–1995. DOI: 10.1016/S0140-6736(09)60332-9
- 38Yassi A, Spiegel J, Barker S, Ehrlich R. Use of computer aided detection to support triage for efficiency at the MBOD.
http://med-fom-ghrp-spph.sites.olt.ubc.ca/files/2021/05/Rodney-presentation-mining-may5.pdf . Accessed May 5, 2021. - 39Khan FA, Pande T, Tessema B, et al. Computer-aided reading of tuberculosis chest radiography: Moving the research agenda forward to inform policy. European Respiratory Journal. 2017; 50(1700953). DOI: 10.1183/13993003.00953-2017
- 40Franzblau A, teWaterNaude J, Sen A, et al. Comparison of digital and film chest radiography for detection and medical surveillance of silicosis in a setting with a high burden of tuberculosis. American Journal of Industrial Medicine. 2018; 61(3): 229–238. DOI: 10.1002/ajim.22803
- 41Girdler-Brown BV, White NW, Ehrlich RI, Churchyard GJ. The burden of silicosis, pulmonary tuberculosis and COPD among former Basotho goldminers. American Journal of Industrial Medicine. 2008; 51(9): 640–647. DOI: 10.1002/ajim.20602
- 42Winfield AF, Jirotka M. Ethical governance is essential to building trust in robotics and artificial intelligence systems. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2018; 376(2133). DOI: 10.1098/rsta.2018.0085
- 43Republic of South Africa. Protection of Personal Information Act (POPI Act).
https://popiacoza/2019-2021 . Accessed May 5, 2021. - 44Dwivedi YK, Hughes L, Ismagilova E, et al. Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management. 2019;
101994 . DOI: 10.1016/j.ijinfomgt.2019.08.002 - 45Topol EJ. High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine. 2019; 25(1): 44. DOI: 10.1038/s41591-018-0300-7
- 46Coiera E. The fate of medicine in the time of AI. The Lancet. 2018; 392(10162): 2331–2332. DOI: 10.1016/S0140-6736(18)31925-1
- 47Canadian Institutes of Health Research (CIHR), Canadian Institute for Advanced Research (CIFAR). AI for Public Health Equity. January 25, 2019.
- 48Sun TQ, Medaglia R. Mapping the challenges of Artificial Intelligence in the public sector: Evidence from public healthcare. Government Information Quarterly. 2019; 36(2): 368–383. DOI: 10.1016/j.giq.2018.09.008
- 49Lewis P. Sick miners to get up to R500k: Historic settlement reached in silicosis case. GroundUp. May 3, 2018.
https://www.groundup.org.za/article/historic-settlement-between-gold-industry-and-ex-mineworkers-lung-disease/ . - 50Mahajan A, Vaidya T, Gupta A, Rane S, Gupta S. Artificial intelligence in healthcare in developing nations: The beginning of a transformative journey. Cancer Research, Statistics, and Treatment. 2019; 2(2): 182. DOI: 10.4103/CRST.CRST_50_19
- 51Treviranus J. The three dimensions of inclusive design: A design framework for a digitally transformed and complexly connected society. University College Dublin; 2018.
- 52Racine E, Boehlen W, Sample M. Healthcare uses of artificial intelligence: Challenges and opportunities for growth Healthcare Management Forum 2019. Los Angeles, CA: SAGE Publications. DOI: 10.1177/0840470419843831
- 53Loh E. Medicine and the rise of the robots: A qualitative review of recent advances of artificial intelligence in health. BMJ Leader. 2018. DOI: 10.1136/leader-2018-000071
- 54Courtland R. Bias detectives: The researchers striving to make algorithms fair. Nature. 2018; 558(7710): 357–357. DOI: 10.1038/d41586-018-05469-3
- 55Campbell SH, Scott JT. Rousseau’s Politic Argument in the Discourse on the Sciences and Arts. American Journal of Political Science. 2005; 49(4): 818–828. DOI: 10.1111/j.1540-5907.2005.00157.x
- 56Horton R. Offline: The case against (and for) public health. The Lancet. 2016; 388(10060): 2578. DOI: 10.1016/S0140-6736(16)32387-X
