Have a personal or library account? Click to login
Estimation of DENV-2 Transmission as a Function of Site-Specific Entomological Parameters from Three Cities in Colombia Cover

Estimation of DENV-2 Transmission as a Function of Site-Specific Entomological Parameters from Three Cities in Colombia

Open Access
|Mar 2019

References

  1. 1World Health Organization. Global strategy for dengue prevention and control 2012–2020 (in IRIS). Geneva: World Health Organization; 2012.
  2. 2Bhatt S, Gething PW, Brady OJ, et al. The global distribution and burden of dengue. Nature. 2013; 496(7446): 504507. DOI: 10.1038/nature12060
  3. 3Villabona-Arenas CJ, de Oliveira JL, Capra CeS, et al. Detection of four dengue serotypes suggests rise in hyperendemicity in urban centers of Brazil. PLoS Negl Trop Dis. 2014; 8(2): e2620. DOI: 10.1371/journal.pntd.0002620
  4. 4Oki M and Yamamoto T. Climate change, population immunity, and hyperendemicity in the transmission threshold of dengue. PLoS One. 2012; 7(10): e48258. DOI: 10.1371/journal.pone.0048258
  5. 5Usme-Ciro JA, Mendez JA, Tenorio A, Rey GJ, Domingo C and Gallego-Gomez JC. Simultaneous circulation of genotypes I and III of dengue virus 3 in Colombia. Virol J. 2008; 5: 101. DOI: 10.1186/1743-422X-5-101
  6. 6Villar LA, Rojas DP, Besada-Lombana S and Sarti E. Epidemiological trends of dengue disease in Colombia (2000–2011): A systematic review. PLoS Negl Trop Dis. 2015; 9(3): e0003499. DOI: 10.1371/journal.pntd.0003499
  7. 7Pérez-Castro R, Castellanos JE, Olano VA, et al. Detection of all four dengue serotypes in Aedes aegypti female mosquitoes collected in a rural area in Colombia. Mem Inst Oswaldo Cruz. 2016; 111(4): 233240. DOI: 10.1590/0074-02760150363
  8. 8Smith DL, Perkins TA, Reiner RC, et al. Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Trans R Soc Trop Med Hyg. 2014; 108(4): 185197. DOI: 10.1093/trstmh/tru026
  9. 9Kramer LD and Ciota AT. Dissecting vectorial capacity for mosquito-borne viruses. Curr Opin Virol. 2015; 15: 112118. DOI: 10.1016/j.coviro.2015.10.003
  10. 10Garrett-Jones C. The human blood index of malaria vectors in relation to epidemiological assessment. Bull World Health Organ. 1964; 30: 241261.
  11. 11Bennett KE, Olson KE, Muñoz MeL, et al. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am J Trop Med Hyg. 2002; 67(1): 8592. DOI: 10.4269/ajtmh.2002.67.85
  12. 12Almeida AP, Baptista SS, Sousa CA, et al. Bioecology and vectorial capacity of Aedes albopictus (Diptera: Culicidae) in Macao, China, in relation to dengue virus transmission. J Med Entomol. 2005; 42(3): 419428. DOI: 10.1093/jmedent/42.3.419
  13. 13Christofferson RC and Mores CN. Estimating the magnitude and direction of altered arbovirus transmission due to viral phenotype. PLoS One. 2011; 6(1): e16298. DOI: 10.1371/journal.pone.0016298
  14. 14Peña-García VH, Triana-Chávez O, Mejía-Jaramillo AM, Díaz FJ, Gómez-Palacio A and Arboleda-Sánchez S. Infection rates by dengue virus in mosquitoes and the influence of temperature may be related to different endemicity patterns in three Colombian cities. Int J Environ Res Public Health. 2016; 13(5).
  15. 15Arboleda S, Jaramillo-O N and Peterson AT. Spatial and temporal dynamics of Aedes aegypti larval sites in Bello, Colombia. J Vector Ecol. 2012; 37(1): 3748. DOI: 10.1111/j.1948-7134.2012.00198.x
  16. 16Bowman LR, Runge-Ranzinger S and McCall PJ. Assessing the relationship between vector indices and dengue transmission: A systematic review of the evidence. PLoS Negl Trop Dis. 2014; 8(5): e2848. DOI: 10.1371/journal.pntd.0002848
  17. 17de Melo DP, Scherrer LR and Eiras Á. Dengue fever occurrence and vector detection by larval survey, ovitrap and MosquiTRAP: A space-time clusters analysis. PLoS One. 2012; 7(7): e42125. DOI: 10.1371/journal.pone.0042125
  18. 18Descloux E, Mangeas M, Menkes CE, et al. Climate-based models for understanding and forecasting dengue epidemics. PLoS Negl Trop Dis. 2012; 6(2): e1470. DOI: 10.1371/journal.pntd.0001470
  19. 19Salazar MI, Richardson JH, Sánchez-Vargas I, Olson KE and Beaty BJ. Dengue virus type 2: Replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol. 2007; 7: 9. DOI: 10.1186/1471-2180-7-9
  20. 20Méndez JA, Usme-Ciro JA, Domingo C, et al. Phylogenetic reconstruction of dengue virus type 2 in Colombia. Virol J. 2012; 9: 64. DOI: 10.1186/1743-422X-9-64
  21. 21Sánchez-Vargas I, Scott JC, Poole-Smith BK, et al. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA interference pathway. PLoS Pathog. 2009; 5(2): e1000299. DOI: 10.1371/journal.ppat.1000299
  22. 22Canyon DV and Hii JL. Efficacy of carbon dioxide, 1-octen-3-ol, and lactic acid in modified Fay-Prince traps as compared to man-landing catch of Aedes aegypti. J Am Mosq Control Assoc. 1997; 13(1): 6670.
  23. 23Black WC IV and Moore CG. Population biology as a tool to study vector-borne diseases. In: Marquardt WC (ed.), Biology of disease vectors. 2005; 187206. Second edition. Burlington, MA, USA: Elsevier Academic Press.
  24. 24Chang AY, Fuller DO, Carrasquillo O and Beier JC. Social justice, climate change, and dengue. Health Hum Rights. 2014; 16(1): 93104.
  25. 25Reiner RC, Perkins TA, Barker CM, et al. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. J R Soc Interface. 2013; 10(81). DOI: 10.1098/rsif.2012.0921
  26. 26Walker ED, Torres EP and Villanueva RT. Components of the vectorial capacity of Aedes poicilius for Wuchereria bancrofti in Sorsogon province, Philippines. Ann Trop Med Parasitol. 1998; 92(5): 603614. DOI: 10.1080/00034983.1998.11813318
  27. 27Scott TW and Takken W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 2012; 28(3): 114121. DOI: 10.1016/j.pt.2012.01.001
  28. 28Bowman LR, Donegan S and McCall PJ. Is Dengue Vector Control Deficient in Effectiveness or Evidence?: Systematic Review and Meta-analysis. PLoS Negl Trop Dis. 2016; 10(3): e0004551. DOI: 10.1371/journal.pntd.0004551
  29. 29Service MW. A critical review of procedures for sampling populations of adult mosquitoes. Bull Entomol Res. 1977; 67: 343382. DOI: 10.1017/S0007485300011184
  30. 30Garrett-Jones C and Shidrawi GR. Malaria vectorial capacity of a population of Anopheles gambiae: An exercise in epidemiological entomology. Bull World Health Organ. 1969; 40(4): 531545.
  31. 31Adams B and Kapan DD. Man bites mosquito: Understanding the contribution of human movement to vector-borne disease dynamics. PLoS One. 2009; 4(8): e6763. DOI: 10.1371/journal.pone.0006763
  32. 32LaCon G, Morrison AC, Astete H, et al. Shifting patterns of Aedes aegypti fine scale spatial clustering in Iquitos, Peru. PLoS Negl Trop Dis. 2014; 8(8): e3038. DOI: 10.1371/journal.pntd.0003038
  33. 33Anders KL, Nga lH, Thuy NT, et al. Households as foci for dengue transmission in highly urban Vietnam. PLoS Negl Trop Dis. 2015; 9(2): e0003528. DOI: 10.1371/journal.pntd.0003528
  34. 34Morrison AC, Getis A, Santiago M, Rigau-Perez JG and Reiter P. Exploratory space-time analysis of reported dengue cases during an outbreak in Florida, Puerto Rico, 1991–1992. Am J Trop Med Hyg. 1998; 58(3): 287298. DOI: 10.4269/ajtmh.1998.58.287
  35. 35Spiegel JM, Bonet M, Ibarra AM, Pagliccia N, Ouellette V and Yassi A. Social and environmental determinants of Aedes aegypti infestation in Central Havana: Results of a case-control study nested in an integrated dengue surveillance programme in Cuba. Trop Med Int Health. 2007; 12(4): 503510. DOI: 10.1111/j.1365-3156.2007.01818.x
  36. 36Anderson JR and Rico-Hesse R. Aedes aegypti vectorial capacity is determined by the infecting genotype of dengue virus. Am J Trop Med Hyg. 2006; 75(5): 886892. DOI: 10.4269/ajtmh.2006.75.886
  37. 37da Moura AJ, de Melo Santos MA, Oliveira CM, et al. Vector competence of the Aedes aegypti population from Santiago Island, Cape Verde, to different serotypes of dengue virus. Parasit Vectors. 2015; 8: 114. DOI: 10.1186/s13071-015-0706-8
  38. 38Lambrechts L and Failloux AB. Vector biology prospects in dengue research. Mem Inst Oswaldo Cruz. 2012; 107(8): 10801082. DOI: 10.1590/S0074-02762012000800022
  39. 39Behura SK and Severson DW. Intrinsic features of Aedes aegypti genes affect transcriptional responsiveness of mosquito genes to dengue virus infection. Infect Genet Evol. 2012; 12(7): 14131418. DOI: 10.1016/j.meegid.2012.04.027
  40. 40Liu-Helmersson J, Stenlund H, Wilder-Smith A and Rocklöv J. Vectorial capacity of Aedes aegypti: Effects of temperature and implications for global dengue epidemic potential. PLoS One. 2014; 9(3): e89783. DOI: 10.1371/journal.pone.0089783
  41. 41Peña-García VH, Triana-Chávez O and Arboleda-Sánchez S. Estimating Effects of Temperature on Dengue Transmission in Colombian Cities. Ann Glob Health. 2017; 83(3–4): 509518. DOI: 10.1016/j.aogh.2017.10.011
DOI: https://doi.org/10.5334/aogh.2339 | Journal eISSN: 2214-9996
Language: English
Published on: Mar 13, 2019
Published by: Ubiquity Press
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2019 Victor Hugo Peña-García, Irma Sánchez-Vargas, Rebecca Christofferson, William C. Black IV, Sair Arboleda, Omar Triana-Chavez, published by Ubiquity Press
This work is licensed under the Creative Commons Attribution 4.0 License.