Have a personal or library account? Click to login
Data Collection Survey on Forest Conservation in Mahavir Swami Wildlife Sanctuary for Addressing Climate Change Cover

Data Collection Survey on Forest Conservation in Mahavir Swami Wildlife Sanctuary for Addressing Climate Change

Open Access
|Feb 2025

References

  1. Achard, F., Eva, H.D., Stibig, H.J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J.P. (2002). Determination of deforestation rates of the world’s humid tropical forests. Science, 297(5583), 999–1002.
  2. Baatz, M., Benz, U., Dehghani, S., Heynen, M., Höltje, A., Hofmann, P., Lingenfelder, I., Mimler, M., Sohlbach, M., Weber, M., & Willhauck, G. (2004). eCognition user guide. Definiens Imaging GmbH, Munich, Germany.
  3. Barrett, T. (2014). Storage and flux of carbon in live trees, snags, and logs in the Chugach and Tongass National Forests. Gen. Tech. Rep. PNW-GTR-889. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 44 p., 889.
  4. Barrett, T. M., & Christensen, G. A. (2011). Forests of Southeast and South-Central Alaska, 2004–2008: Five-year forest inventory and analysis report. Gen. Tech. Rep. PNW-GTR-835. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 156 p., 835.
  5. Beets, P.N., Kimberley, M.O., Oliver, G.R., & Pearce, S.H. (2014). The application of stem analysis methods to estimate carbon sequestration in arboreal shrubs from a single measurement of field plots. Forests, 5(5), 919–935.
  6. Berg, S., & Lindholm, E.L. (2005). Energy use and environmental impacts of forest operations in Sweden. Journal of Cleaner Production, 13(1), 33–42.
  7. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing, 65(1), 2–16.
  8. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing, 65(1), 2–16.
  9. Boudreau, J., Nelson, R. F., Margolis, H. A., Beaudoin, A., Guindon, L., & Kimes, D. S. (2008). Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. Remote Sensing of Environment, 112(10), 3876–3890.
  10. Brown, S., Gillespie, A.J., & Lugo, A.E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest science, 35(4), 881–902.
  11. Chako, V.K. (1965). A Manual of Sampling Technology for Forest Survey, Manager.
  12. Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., & Lescure, J.P. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99.
  13. Clerici, N., Rubiano, K., Abd-Elrahman, A., Posada Hoestettler, J.M., & Escobedo, F.J. (2016). Estimating aboveground biomass and carbon stocks in periurban Andean secondary forests using very high resolution imagery. Forests, 7(7), 138.
  14. Glenn, E., Huete, A., Nagler, P., & Nelson, S. (2008). Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors, 8(4), 2136–2160.
  15. Hossain, M., Saha, C., Abdullah, S.R., Saha, S., & Siddique, M.R.H. (2016). Allometric biomass, nutrient and carbon stock models for Kandelia candel of the Sundarbans, Bangladesh. Trees, 30(3), 709–717.
  16. Kebede, B., & Soromessa, T. (2018). Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. cuspidata in Mana Angetu Forest. Ecosystem Health and Sustainability, 4(1), 1–12.
  17. Kumar, P., Dobriyal, M., Kale, A., & Pandey, A. K. (2021). Temporal dynamics change of land use/land cover in Jhansi district of Uttar Pradesh over past 20 years using LANDSAT TM, ETM+ and OLI sensors. Remote Sensing Applications: Society and Environment, 23, 100579.
  18. Kumar, P., Dobriyal, M., Kale, A., Pandey, A. K., Tomar, R. S., & Thounaojam, E. (2022). Calculating forest species diversity with information-theory based indices using sentinel-2A sensor’s of Mahavir Swami Wildlife Sanctuary. PLoS One, 17(5), e0268018.
  19. Kumar, P., Pandey, P. C., Kumar, V., Singh, B. K., Tomar, V., & Rani, M. (2014). Efficient recognition of forest species biodiversity by inventory-based geospatial approach using LISS IV sensor. IEEE Sensors Journal, 15(3), 1884–1891.
  20. Kumar, P., Pandey, P. C., Singh, B. K., Katiyar, S., Mandal, V. P., Rani, M., ... & Patairiya, S. (2016). Estimation of accumulated soil organic carbon stock in tropical forest using geospatial strategy. The Egyptian Journal of Remote Sensing and Space Science, 19(1), 109–123.
  21. Kumar, P., Sajjad, H., Mahanta, K. K., Ahmed, R., & Mandal, V. P. (2018). Assessing suitability of allometric models for predicting stem volume of Anogeissus pendula Edgew in sariska Tiger Reserve, India. Remote Sensing Applications: Society and Environment, 10, 47–55.
  22. Kumar, P., Sajjad, H., Tripathy, B. R., Ahmed, R., & Mandal, V. P. (2018). Prediction of spatial soil organic carbon distribution using Sentinel-2A and field inventory data in Sariska Tiger Reserve. Natural Hazards, 90, 693–704.
  23. Kumar, P., Sharma, L. K., Pandey, P. C., Sinha, S., & Nathawat, M. S. (2012). Geospatial strategy for tropical forest-wildlife reserve biomass estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 917–923.
  24. Kumar, P., Sharma, L.K., Pandey, P.C., Sinha, S., & Nathawat, M.S. (2013). Geospatial strategy for tropical forest-wildlife reserve biomass estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 917–923.
  25. Mitchard, E.T.A., Saatchi, S.S., White, L.J.T., Abernethy, K.A., Jeffery, K.J., Lewis, S.L., Collins, M., Lefsky, M.A., Leal, M.E., Woodhouse, I.H., & Meir, P. (2012). Mapping tropical forest biomass with radar and spaceborne LiDAR: overcoming problems of high biomass and persistent cloud. Biogeosciences Discussions, 9(1), 179–191.
  26. Oberthür, S., & Ott, H.E. (1999). The Kyoto Protocol: international climate policy for the 21st century. Springer Science & Business Media.
  27. Otukei, J.R., & Emanuel, M. (2015). Estimation and mapping of above ground biomass and carbon of Bwindi impenetrable National Park using ALOS PALSAR data. South African Journal of Geomatics, 4(1), 1–13.
  28. Popescu, S.C., Wynne, R.H., & Nelson, R.F. (2003). Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Canadian journal of remote sensing, 29(5), 564–577.
  29. Segura, M., & Kanninen, M. (2005). Allometric Models for Tree Volume and Total Aboveground Biomass in a Tropical Humid Forest in Costa Rica 1. Biotropica: The Journal of Biology and Conservation, 37(1), 2–8.
  30. Singh, R. K., Singh, P., Drews, M., *Kumar, P., Singh, H., Gupta, A. K., ... & Kumar, M. (2021). A machine learning-based classification of LANDSAT images to map land use and land cover of India. Remote Sensing Applications: Society and Environment, 24, 100624.
  31. Vargas-Larreta, B., López-Sánchez, C.A., Corral-Rivas, J.J., López-Martínez, J.O., Aguirre-Calderón, C.G., & Álvarez-González, J.G. (2017). Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western Mexico. Forests, 8(8), 269.
  32. Vashum, K.T., & Jayakumar, S. (2012). Methods to estimate aboveground biomass and carbon stock in natural forests-A review. J. Ecosyst. Ecogr, 2(4), 1–7.
DOI: https://doi.org/10.3986/hacq-2025-0001 | Journal eISSN: 1854-9829 | Journal ISSN: 1581-4661
Language: English
Page range: 137 - 144
Submitted on: Feb 2, 2023
|
Accepted on: Jun 13, 2024
|
Published on: Feb 21, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Pankaj Lavania, Garima Gupta, Pavan Kumar, K. K. Singh, Prabhat Tiwari, Manmohan Dobriyal, A. K. Pandey, Manish Srivastav, published by Slovenian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.