References
- Achard, F., Eva, H.D., Stibig, H.J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J.P. (2002). Determination of deforestation rates of the world’s humid tropical forests. Science, 297(5583), 999–1002.
- Baatz, M., Benz, U., Dehghani, S., Heynen, M., Höltje, A., Hofmann, P., Lingenfelder, I., Mimler, M., Sohlbach, M., Weber, M., & Willhauck, G. (2004). eCognition user guide. Definiens Imaging GmbH, Munich, Germany.
- Barrett, T. (2014). Storage and flux of carbon in live trees, snags, and logs in the Chugach and Tongass National Forests. Gen. Tech. Rep. PNW-GTR-889. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 44 p., 889.
- Barrett, T. M., & Christensen, G. A. (2011). Forests of Southeast and South-Central Alaska, 2004–2008: Five-year forest inventory and analysis report. Gen. Tech. Rep. PNW-GTR-835. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. 156 p., 835.
- Beets, P.N., Kimberley, M.O., Oliver, G.R., & Pearce, S.H. (2014). The application of stem analysis methods to estimate carbon sequestration in arboreal shrubs from a single measurement of field plots. Forests, 5(5), 919–935.
- Berg, S., & Lindholm, E.L. (2005). Energy use and environmental impacts of forest operations in Sweden. Journal of Cleaner Production, 13(1), 33–42.
- Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing, 65(1), 2–16.
- Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing, 65(1), 2–16.
- Boudreau, J., Nelson, R. F., Margolis, H. A., Beaudoin, A., Guindon, L., & Kimes, D. S. (2008). Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. Remote Sensing of Environment, 112(10), 3876–3890.
- Brown, S., Gillespie, A.J., & Lugo, A.E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest science, 35(4), 881–902.
- Chako, V.K. (1965). A Manual of Sampling Technology for Forest Survey, Manager.
- Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., & Lescure, J.P. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99.
- Clerici, N., Rubiano, K., Abd-Elrahman, A., Posada Hoestettler, J.M., & Escobedo, F.J. (2016). Estimating aboveground biomass and carbon stocks in periurban Andean secondary forests using very high resolution imagery. Forests, 7(7), 138.
- Glenn, E., Huete, A., Nagler, P., & Nelson, S. (2008). Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors, 8(4), 2136–2160.
- Hossain, M., Saha, C., Abdullah, S.R., Saha, S., & Siddique, M.R.H. (2016). Allometric biomass, nutrient and carbon stock models for Kandelia candel of the Sundarbans, Bangladesh. Trees, 30(3), 709–717.
- Kebede, B., & Soromessa, T. (2018). Allometric equations for aboveground biomass estimation of Olea europaea L. subsp. cuspidata in Mana Angetu Forest. Ecosystem Health and Sustainability, 4(1), 1–12.
- Kumar, P., Dobriyal, M., Kale, A., & Pandey, A. K. (2021). Temporal dynamics change of land use/land cover in Jhansi district of Uttar Pradesh over past 20 years using LANDSAT TM, ETM+ and OLI sensors. Remote Sensing Applications: Society and Environment, 23, 100579.
- Kumar, P., Dobriyal, M., Kale, A., Pandey, A. K., Tomar, R. S., & Thounaojam, E. (2022). Calculating forest species diversity with information-theory based indices using sentinel-2A sensor’s of Mahavir Swami Wildlife Sanctuary. PLoS One, 17(5), e0268018.
- Kumar, P., Pandey, P. C., Kumar, V., Singh, B. K., Tomar, V., & Rani, M. (2014). Efficient recognition of forest species biodiversity by inventory-based geospatial approach using LISS IV sensor. IEEE Sensors Journal, 15(3), 1884–1891.
- Kumar, P., Pandey, P. C., Singh, B. K., Katiyar, S., Mandal, V. P., Rani, M., ... & Patairiya, S. (2016). Estimation of accumulated soil organic carbon stock in tropical forest using geospatial strategy. The Egyptian Journal of Remote Sensing and Space Science, 19(1), 109–123.
- Kumar, P., Sajjad, H., Mahanta, K. K., Ahmed, R., & Mandal, V. P. (2018). Assessing suitability of allometric models for predicting stem volume of Anogeissus pendula Edgew in sariska Tiger Reserve, India. Remote Sensing Applications: Society and Environment, 10, 47–55.
- Kumar, P., Sajjad, H., Tripathy, B. R., Ahmed, R., & Mandal, V. P. (2018). Prediction of spatial soil organic carbon distribution using Sentinel-2A and field inventory data in Sariska Tiger Reserve. Natural Hazards, 90, 693–704.
- Kumar, P., Sharma, L. K., Pandey, P. C., Sinha, S., & Nathawat, M. S. (2012). Geospatial strategy for tropical forest-wildlife reserve biomass estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 917–923.
- Kumar, P., Sharma, L.K., Pandey, P.C., Sinha, S., & Nathawat, M.S. (2013). Geospatial strategy for tropical forest-wildlife reserve biomass estimation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 917–923.
- Mitchard, E.T.A., Saatchi, S.S., White, L.J.T., Abernethy, K.A., Jeffery, K.J., Lewis, S.L., Collins, M., Lefsky, M.A., Leal, M.E., Woodhouse, I.H., & Meir, P. (2012). Mapping tropical forest biomass with radar and spaceborne LiDAR: overcoming problems of high biomass and persistent cloud. Biogeosciences Discussions, 9(1), 179–191.
- Oberthür, S., & Ott, H.E. (1999). The Kyoto Protocol: international climate policy for the 21st century. Springer Science & Business Media.
- Otukei, J.R., & Emanuel, M. (2015). Estimation and mapping of above ground biomass and carbon of Bwindi impenetrable National Park using ALOS PALSAR data. South African Journal of Geomatics, 4(1), 1–13.
- Popescu, S.C., Wynne, R.H., & Nelson, R.F. (2003). Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Canadian journal of remote sensing, 29(5), 564–577.
- Segura, M., & Kanninen, M. (2005). Allometric Models for Tree Volume and Total Aboveground Biomass in a Tropical Humid Forest in Costa Rica 1. Biotropica: The Journal of Biology and Conservation, 37(1), 2–8.
- Singh, R. K., Singh, P., Drews, M., *Kumar, P., Singh, H., Gupta, A. K., ... & Kumar, M. (2021). A machine learning-based classification of LANDSAT images to map land use and land cover of India. Remote Sensing Applications: Society and Environment, 24, 100624.
- Vargas-Larreta, B., López-Sánchez, C.A., Corral-Rivas, J.J., López-Martínez, J.O., Aguirre-Calderón, C.G., & Álvarez-González, J.G. (2017). Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western Mexico. Forests, 8(8), 269.
- Vashum, K.T., & Jayakumar, S. (2012). Methods to estimate aboveground biomass and carbon stock in natural forests-A review. J. Ecosyst. Ecogr, 2(4), 1–7.