References
- Allaire, G., Jouve, F., and Toader, A.-M. (2004). Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics 194(1):363–393.
- Behrou, R., Abi Ghanem, M., Macnider, B.C., Verma, V., Alvey, R., Hong, J., Emery, A.F., Kim, H.A., Boechler, N. (2021). Topology optimization of nonlinear periodically microstructured materials for tailored homogenized constitutive properties, Composite Structures 266: 113729. https://doi.org/10.1016/j.compstruct.2021.113729
- Campolongo, F., Cariboni, J., and Saltelli, A. (2007). An effective screening design for sensitivity analysis of large models. Environmental Modelling and Software 22(10): 1509 – 1518.
- Campolongo, F., Saltelli, A., and Cariboni, J. (2011). From screening to quantitative sensitivity analysis. a unified approach. Computer Physics Communications 182(4): 978–988.
- Capolino, F. (2009). Theory and Phenomena of Metamaterials. Boca Raton, FL: CRC Press.
- Castillo, E., M´ınguez, R., and Castillo, C. (2008). Sensitivity analysis in optimization and reliability problems. Reliability Engineering and System Safety 93(12): 1788–1800.
- Engheta, N. and Ziolkowski, R. W. (2006). Metamaterials: Physics and Engineering Explorations. New York: John Wiley & Sons, Hoboken.
- Guenneau, S., Movchan, A., P´etursson, G., and Anantha Ramakrishna, S. (2007). Acoustic metamaterials for sound focusing and confinement. New Journal of Physics 9(11): 399.
- Hussein, M. I., Leamy, M. J., and Ruzzene, M. (2014). Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook. Applied Mechanics Reviews 66(4): 040802.
- Khelif, A. and Adibi, A.U. (2015). Phononic crystals: Fundamentals and applications. Krushynska, A.O., Torrent, D., Arag´on, A.M., Ardito, R., Bilal, O.R., Bonello, B., Bosia, F., Chen, Y., Christensen, J., Colombi, A., Cummer, S. A., Djafari-Rouhani, B., Fraternali, F., Galich, P. I., Garcia, P. D., Groby, J.-P., Guenneau, S., Haberman, M. R., Hussein, M. I., Janbaz, S., Jim´enez, N., Khelif, A., Laude, V., Mirzaali, M.J., Packo, P., Palermo, A., Pennec, Y., Pic´o, R., L´opez, M. R., Rudykh, S., Serra-Garcia, M., Torres, C.M. S., Starkey, T.A., Tournat, V., and Wright, O.B. (2023). Emerging topics in nanophononics and elastic, acoustic, and mechanical metamaterials: an overview. Nanophotonics 12(4): 659–686.
- Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T., and Sheng, P. (2000). Locally resonant sonic materials. Science 289(5485): 1734–1736.
- Morris, M.D. (1991). Factorial sampling plans for preliminary computational experiments. Technometrics 33(2): 161–174.
- Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S., and Wu, Q. (2019). Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environmental Modelling and Software 114: 29 – 39.
- Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S. (2008). Global Sensitivity Analysis: The Primer. John Wiley Sons, Chichester.
- Sigmund, O. and Jensen, J. S. (2003). Systematic design of phononic band-gap materials and structures by topology optimization. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences 361(1806): 1001 – 1019.
- Sun, J. and Zhou, J. (2025). Metamaterials: The art in materials science. Engineering 44: 145–161.
- Yu, X., Zhou, J., Liang, H., Jiang, Z., and Wu, L. (2018). Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review. Progress in Materials Science 94: 114–173.