Have a personal or library account? Click to login
Identification of Motion Model Parameters for a Small Hybrid-Propelled Unmanned Underwater Vehicle (HUUV) Cover

Identification of Motion Model Parameters for a Small Hybrid-Propelled Unmanned Underwater Vehicle (HUUV)

Open Access
|Dec 2025

References

  1. Bluerobotics. (2025). T200 thruster data. Retrieved from https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-r2-rp/ (date of access: 2025/11/4).
  2. Chan, W. L., & Kang, T. (2011). Simultaneous determination of drag coefficient and added mass. IEEE Journal of Oceanic Engineering, 36(3), 422–430. https://doi.org/10.1109/JOE.2011.2151370
  3. Da Silva, J. E., et al. (2007). Modeling and simulation of the LAUV autonomous underwater vehicle. 13th IEEE IFAC International Conference on Methods and Models in Automation and Robotics, Szczecin, Poland.
  4. Foroushani, J. A., & Sabzpooshani, M. (2021). Determination of hydrodynamic derivatives of an ocean vehicle using CFD analyses of synthetic standard dynamic tests. Applied Ocean Research, 108. https://doi.org/10.1016/j.apor.2021.102539
  5. Fossen, T. I. (1994). Guidance and control of ocean vehicles. Wiley.
  6. Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. Wiley.
  7. Gracey, W. (1941). The additional-mass effect of plates as determined by experiments (Report No. NACA-TR-707). National Advisory Committee for Aeronautics.
  8. Jurczyk, K., Piskur, P., & Szymak, P. (2020). Parameters identification of the flexible fin kinematics model using vision and genetic algorithms. Polish Maritime Research, 27(2), 39–47. https://doi.org/10.2478/pomr-2020-0025
  9. Kim, K., & Choi, H. S. (2007). Analysis on the controlled nonlinear motion of a test bed AUV-SNUUV I. Ocean Engineering, 34(8–9), 1138–1150. https://doi.org/10.1016/j.oceaneng.2006.08.011
  10. Lam, J., et al. (2023). Propeller characterization testing of a Blue Robotics T200 thruster. In OCEANS. IEEE. https://doi.org/10.1109/OCEANSLimerick52467.2023.10244513
  11. Le, T. L., & Hong, D. T. (2021). Computational fluid dynamics study of the hydrodynamic characteristics of a torpedo-shaped underwater glider. Fluids, 6(7). https://doi.org/10.3390/fluids6070252
  12. Moelyadi, M. A., & Riswandi, B. B. (2018). CFD-based added mass prediction in cruise condition of underwater vehicle dynamic. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1005/1/012011
  13. Morawski, M., et al. (2018). Hardware and low-level control of biomimetic underwater vehicle designed to perform ISR tasks. Journal of Marine Engineering and Technology, 16(4). https://doi.org/10.1080/20464177.2017.1387089
  14. Newman, J.N. (1977a). Marine hydrodynamics. MIT Press. https://doi.org/10.7551/mitpress/4443.001.0001
  15. Newman, J.N. (1977b). Marine hydrodynamics. MIT Press. https://doi.org/10.7551/mitpress/4443.001.0001
  16. Szymak, P., et al. (2021). Modeling and simulation of innovative autonomous underwater vehicle PAST. In 2nd International Conference of Maritime Science & Technology. University of Dubrovnik Maritime Department. Retrieved from https://www.researchgate.net/publication/357164323
  17. Piskur, P., et al. (2021). Innovative energy-saving propulsion system for low-speed biomimetic underwater vehicles. Energies, 14(24). https://doi.org/10.3390/en14248418
  18. Piskur, P., et al. (2025). Why the Fossen model is so popular for marine vehicles’ dynamic analysis? In Proceedings – European Council for Modelling and Simulation (ECMS) (pp. 545–550). https://doi.org/10.7148/2025-0545
  19. Prestero, T. (2001). Verification of a six-degree-of-freedom simulation model for the REMUS autonomous underwater vehicle (Master’s thesis). Massachusetts Institute of Technology. https://doi.org/10.1575/1912/3040
  20. Przybylski, M. (2019). Mathematical model of biomimetic underwater vehicle. In Proceedings – European Council for Modelling and Simulation (ECMS) (pp. 343–347). https://doi.org/10.7148/2019-0343
  21. Sakaki, A., & Sadeghian Kerdabadi, M. (2020a). Experimental and numerical determination of the hydrodynamic coefficients of an autonomous underwater vehicle. Scientific Journals of the Maritime University of Szczecin, 62(134), 124–135. https://doi.org/10.17402/427
  22. Sakaki, A., & Sadeghian Kerdabadi, M. (2020b). Experimental and numerical determination of the hydrodynamic coefficients of an autonomous underwater vehicle. Scientific Journals of the Maritime University of Szczecin, 62(134), 124–135. https://doi.org/10.17402/427
  23. Shrivastava, A., Karthikeyan, M., & Rajagopal, P. (2021). Modelling and motion control of an underactuated autonomous underwater vehicle. In 2021 6th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS) (pp. 62–68). https://doi.org/10.1109/ACIRS52449.2021.9519334
  24. Society of Naval Architects and Marine Engineers. (1950). Nomenclature for treating the motion of a submerged body through a fluid. Report of the American Towing Tank Conference. New York.
  25. Steenson, L. V., et al. (2012). Effect of measurement noise on the performance of a depth and pitch controller using the model predictive control method. AUV 2012. https://doi.org/10.1109/AUV.2012.6380732
  26. Suzuki, H., et al. (2013). Evaluation of methods to estimate hydrodynamic force coefficients of underwater vehicles based on CFD. In IFAC Proceedings Volumes (pp. 197–202). https://doi.org/10.3182/20130918-4-JP-3022.00026
  27. Tae Kyu Ha, et al. (2008). Sliding mode control for autonomous underwater vehicle under open control platform environment. In SICE Annual Conference 2008. The University of Electro-Communications, Japan.
  28. Talarczyk, T. (2023a). A dynamic submerging motion model of the hybrid-propelled unmanned underwater vehicle: Simulation and experimental verification. International Journal of Applied Mathematics and Computer Science, 33(2), 207–218. https://doi.org/10.34768/amcs-2023-0016
  29. Talarczyk, T. (2023b). A dynamic submerging motion model of the hybrid-propelled unmanned underwater vehicle: Simulation and experimental verification. International Journal of Applied Mathematics and Computer Science, 33(2), 207–218. https://doi.org/10.34768/amcs-2023-0016
  30. Tran, N. H., et al. (2016). Steering and diving control of a small-sized AUV. In Lecture Notes in Electrical Engineering (Vol. 371, pp. 619–632). https://doi.org/10.1007/978-3-319-27247-4_52
  31. Wang, Z., et al. (2025a). Identification modeling and trajectory tracking of robotic fish with synergistic fins-body. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2025.3621044
  32. Wang, Z., et al. (2025b). Identification modeling and trajectory tracking of robotic fish with synergistic fins-body. IEEE Transactions on Robotics. https://doi.org/10.1109/TRO.2025.3621044/MM1
  33. Watson, K.P., Webster, J.S., & Crane, J.W. (1993). Prediction of submersible maneuvering performance at high incidence angles. In Proceedings of OCEANS ’93, Victoria, Canada. https://doi.org/10.1109/OCEANS.1993.326108
  34. Xie, F., & Du, R. (2019). Central pattern generator control for a biomimetic robot fish in maneuvering. In 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 268–273). https://doi.org/10.1109/ROBIO.2018.8665047
DOI: https://doi.org/10.37705/TechTrans/2025031 | Journal eISSN: 2353-737X | Journal ISSN: 0011-4561
Language: English
Submitted on: Nov 5, 2025
|
Accepted on: Dec 17, 2025
|
Published on: Dec 26, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Tomasz Talarczyk, Marcin Morawski, Marcin Malec, Michał Garncarz, published by Cracow University of Technology
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.

Volume 122 (2025): Issue 1 (January 2025)