References
- A
fsaneh E., Sharifdini A., Ghazzaghi H., Ghobadi M.Z., Recent applications of machine learning and deep learning models in the prediction, diagnosis, and management of diabetes: a comprehensive review, Diabetology & Metabolic Syndrome, 2022, 14 (196), DOI: 10.1186/s13098-022-00969-9. - A
lruhaymi A.Z., Kim C.J., Study on the Missing Data Mechanisms and Imputation Methods, Open Journal of Statistics, 2021, 11 (4), 477–492, DOI: 10.4236/ojs.2021.114030. - A
marnath S., Selvamani M., Varadarajan V., Prognosis Model for Gestational Diabetes Using Machine Learning Techniques, Sensros and Metarials, 2021, 3 (9), 3011–3025, DOI: 10.18494/SAM.2021.3119. - B
ascil M.S., Convolutional Neural Network to Extract the Best Treatment Way of Warts Based on Data Mining, Revue d’Intelligence Artificielle, 2019, 33 (3), 165–170, DOI: 10.18280/ria.330301. - B
ascil M.S., A New Approach on HCI Extracting Conscious Jaw Movements Based on EEG Signals Using Machine Learnings, Journal of Med. Syst., 2018, 42, 169, DOI: 10.1007/s10916-018-1027-1. - B
atista G.E., Monard M.C., An analysis of four missing data treatment methods for supervised learning, Applied Artificial Intelligence, 2003, 17 (5–6), 519–533, DOI: 10.1080/713827181. - B
en -Hur A., Weston J., A user’s guide to support vector machines, Methods in Molecular Biology, 2009, 609, 223–239, DOI: 10.1007/978-1-60327-241-4_13. - B
enham J.L., Gingras V., Mc Lennan N.M., Most J., Yamamoto J.M., Aiken C.E. et al., Precision gestational diabetes treatment: a systematic review and meta-analyses, Communications Medicine, 2023, 3 (1), 135, DOI: 10.1038/s43856-023-00371-0. - C
ortes C., Vapnik V., Support-vector networks, Machine Learning, 1995, 20 (3), 273–297, DOI: 10.1007/BF00994018. - C
over T., Hart P., Nearest neighbor pattern classification, IEEE Transactions on Information Theory, 1967, 13 (1), 21–27, DOI: 10.1109/TIT.1967.1053964. - D
e Fronzo R.A., Ferrannini E., Groop L., Henry R.R., Herman W.H., Holst J.J. et al., Type 2 diabetes mellitus, Nature Reviews Disease Primers, 2015, 1 (15019), DOI: 10.1038/nrdp.2015.19. - E
mmanuel T., Maupong T., Mpoeleng D., Semong T., Mphago D., Tabona O., A survey on missing data in machine learning, Journal of Big Data, 2021, 8, 140, DOI: 10.1186/s40537-021-00516-9. - G
nanadass I., Prediction of Gestational Diabetes by Machine Learning Algorithms, IEEE Potentials, 2020, 39 (6), 32–37, DOI: 10.1109/MPOT.2020.3015190. - G
orur K., Bozkurt M.R., Bascil M.S., Temurtas F., GKP signal processing using deep CNN and SVM for tonguemachine interface, Traitement du Signal, 2019, 6 (4), 319–329, DOI: 10.18280/ts.360404. - G
örür K., Bozkurt M.R., Bascil M.S., Temurtas F., Tongue-Operated Biosignal over EEG and Processing with Decision Tree and kNN, Academic Platform-Journal of Engineering Science, 2021, 9 (1), 112–125, DOI: 10.21541/apjes.583049. - H
uang Y., Mc Cullagh P., Black N., Harper R., Feature selection and classification model construction on type 2 diabetic patient’s data, Artif. Intell. Med., 2007, 41 (3), 251–262, DOI: 10.1016/j.artmed.2007.07.002. - J
unninen H., Niska H., Tuppurainen K., Ruuskanen J., Kolehmainen M., Methods for imputation of missing values in air quality data sets, Atmospheric Environment, 2004, 38 (18), 2895–2907, DOI: 10.1016/j.atmosenv.2004.02.02. - K
ang B.S., Lee S.U., Hong S., Choi S.K., Shin J.E. et al., Prediction of gestational diabetes mellitus in Asian women using machine learning algorithms, Scientific Reports, 2023, 13 (13356), DOI: 10.1038/s41598-023-39680-8. - K
aya Y., Bütün Z., Çelik Ö., Salik E.A., Tahta T., Yavuz A.A., The early prediction of gestational diabetes mellitus by machine learning models, BMC Pregnancy and Childbirth, 2024, 24 (1), 574, DOI: 10.1186/s12884-024-06783-7. - L
e Cun Y., Bottou L., Bengio Y., Haffner P., Gradient-based learning applied to document recognition, Proceedings of the IEEE, 1998, 86 (11), 2278–2324, DOI: 10.1109/5.726791. - L
iao H., Zhang X., Zhao C., Chen Y., Zeng X., Li H., Light GBM: an efficient and accurate method for predicting pregnancy diseases, Journal of Obstetrics and Gynaecology, 2021, 42 (4), 620–629. - L
itjens G., Kooi T., Bejnordi B.E., Setio A.A., Ciompi F. et al., A survey on deep learning in medical image analysis, Medical Image Analysis, 2017, 42, 60–88, DOI: 10.1016/j.media.2017.07.00. - L
ittle R.J.A., Rubin D.B., Statistical Analysis with Missing Data, Wiley, 2019. - M
agoulas G.D., Prentza A., Machine Learning in Medical Applications, Springer, Berlin 2001, DOI: 10.1007/3-540-44673-7_19. - M
c Intyre H.D., Catalano P., Zhang C., Desoye G., Mathiesen E.R., Damm P., Gestational diabetes mellitus, Natura Reviews Disease Primers, 2019, 5 (1), 47, DOI: 10.1038/s41572-019-0098-8. - O
zer I., Karaca A.C., Ozer C.K., Gorur K., Kocak I., Cetin O., The exploration of the transfer learning technique for Globotruncanita genus against the limited low-cost light microscope images, Signal, Image and Video Proesssing, 2024, 18, 6363–6377, DOI: 10.1007/s11760-024-03322-x. - P
apailiou I., Spyropoulos F., Trichakis I., Karatzas G.P., Artificial Neural Networks and Multiple Linear Regression for Filling in Missing Daily Rainfall Data, Water, 2022, 14 (18), 2892, DOI: 10.3390/w14182892. - P
eterson L.E., K-Nearest Neighbor, Scholarpedia, 2009, 4 (2), 1883, DOI: 10.4249/scholarpedia.1883. - Q
i X., Guo H., Wang W., A reliable KNN filling approach for incomplete interval-valued data, Engineering Applications of Artificial Intelligence, 2021, 100, 104175, DOI: 10.1016/j.engappai.2021.104175. - R
ana M., Bhushan M., Machine learning and deep learning approach for medical image analysis: diagnosis to detection, Multimedia Tools Applications, 2023, 82, 26731–26769, DOI: 10.1007/s11042-022-14305-w. - S
arwar M.A., Kamal N., Hamid W., Shah M.A., Prediction of Diabetes Using Machine Learning Algorithms in Healthcare, 24th International Conference on Automation and Computing (ICAC) 2018, 1–6, Newcastle Upon Tyne, UK, DOI: 10.23919/IConAC.2018.8748992. - S
hen J., Chen J., Zheng Z., Zheng J., Liu Z., Song J. et al., An Innovative Artificial Intelligence-Based App for the Diagnosis of Gestational Diabetes Mellitus (GDM-AI): Development Study, Journal of Medical Internet Research, 2020, 22 (9), e21573, DOI: 10.2196/21573. - S
hen D., Wu G., Suk H.I., Deep learning in medical image analysis, Annual Review of Biomedical Engineering, 2017, 19, 221–248, DOI: 10.1146/annurev-bioeng-071516-044442. - S
umathi A., Meganathan S., Ravisankar S.V., An intelligent gestational diabetes diagnosis model using deep stacked autoencoder, Computers, Materials & Continua, 2021, 69 (3), 3109–3126, DOI: 10.32604/cmc.2021.017612. - S
umathi A., Meganathan S., Ensemble Classifier Technique to Predict Gestational Diabetes Mellitus (GDM), Computer Systems Science and Engineering, 2022, 40 (1), 313–325, DOI: 10.32604/csse.2022.017484. - T
royanskaya O., Cantor M., Sherlock G., Brown P., Hastie T. et al., Missing value estimation methods for DNA microarrays, Bioinformatics, 2001, 17 (6), 520–525, DOI: 10.1093/bioinformatics/17.6.520. - T
rujillo A.L., Insulin Analogs and Pregnancy, Diabetes Spectrum, 2007, 20 (2), 94–101, DOI: 10.2337/diaspect.20.2.94. - W
ang X., Wang Y., Zhang S., Yao L., Xu S., Analysis and Prediction of Gestational Diabetes Mellitus by the Ensemble Learning Method, International Journal of Computatiomal Intelligence Systems, 2022, 15 (72), DOI: 10.1007/s44196-022-00110-8. - W
ei L.L., Pan Y.S., Zhang Y., Chen K., Wang H.Y., Wang J.Y., Application of machine learning algorithm for predicting gestational diabetes mellitus in early pregnancy, Frontiers of Nursing, 2021, 8 (1), 209–221, DOI: 10.2478/fon-2021-0022. - W
en L., Li X., Gao L., Zhang Y., A new convolutional neural network-based data-driven fault diagnosis method, IEEE Transactions on Industrial Electronics, 2018, 65 (7), 5990–5998, DOI: 10.1109/TIE.2017.2774777. - Y
e Y., Xiong Y., Zhou Q., Wu Z., Li X., Xiao X., Comparison of machine learning methods and conventional logistic regressions for predicting gestational diabetes using routine clinical data: a retrospective cohort study, Journal of Diabetes Research, 2020, 4168340, 1–10, DOI: 10.1155/2020/4168340. - Z
hou F., Ran X., Song F., Wu O., Jia Y. et al., A stepwise prediction and interpretation of gestational diabetes mellitus: Foster the practical application of machine learning in clinical decision, Heliyon, 2024, 10 (1), 12(e32709), DOI: 10.1016/j.heliyon.2024.e3270. - Z
ou Q., Qu K., Luo Y., Yin D., Ju Y., Tang H., Predicting Diabetes Mellitus With Machine Learning Techniques, Frontiers in Genetics, 2018, 9, 515, DOI: 10.3389/fgene.2018.00515.