Have a personal or library account? Click to login
Characterization of biomaterials with reference to biocompatibility dedicated for patient-specific finger implants Cover

Characterization of biomaterials with reference to biocompatibility dedicated for patient-specific finger implants

Open Access
|May 2024

References

  1. Alipal J., Lee T.C., Koshy P., Abdullah H.Z., Idris M.I., Evolution of anodised titanium for implant applications, Heliyon, 2021, 7, DOI: 10.1016/J.HELIYON.2021.E07408.
  2. Amat N.F., Muchtar A., Amril M.S., Ghazali M.J., Yahaya N., Effect of sintering temperature on the aging resistance and mechanical properties of monolithic zirconia, J. Mater. Res. Technol., 2019, 8, 1092–1101, DOI: 10.1016/J.JMRT.2018.07.017.
  3. Arcos D., Vallet-Regí M., Substituted hydroxyapatite coatings of bone implants, J. Mater. Chem. B., 2020, 8, 1781–1800, DOI: 10.1039/C9TB02710F.
  4. Barriobero-Vila P., Gussone J., Haubrich J., Sandlöbes S., Da Silva J.C., Cloetens P., Schell N., Requena G., Inducing Stable α + β Microstructures during Selective Laser Melting of Ti-6Al-4V Using Intensified Intrinsic Heat Treatments, Mater., 2017, 10: 268, DOI: 10.3390/MA10030268.
  5. Barriobero-Vila P., Gussone J., Stark A., Schell N., Haubrich J., Requena G., Peritectic titanium alloys for 3D printing, Nat. Commun., 2018, 9, 1–9, DOI: 10.1038/s41467-018-05819-9.
  6. Bergamo E.T.P., Cardoso K.B., Lino L.F.O., Campos T.M.B., Monteiro K.N., Cesar P.F., Genova L.A., Thim G.P., Coelho P.G., Bonfante E.A., Alumina-toughened zirconia for dental applications: Physicochemical, mechanical, optical and residual stress characterization after artificial aging, J. Biomed. Mater. Res. B. Appl. Biomater., 2021, 109, 1135–1144, DOI: 10.1002/JBM.B.34776.
  7. Biswas S., Dasgupta P., Pramanik P., Chanda A., Macro and Micro-indentation Behavior of the Cortical Part of Human Femur, Procedia Mater. Sci., 2014, 5: 2320–2329, DOI: 10.1016/J.MSPRO.2014.07.475.
  8. Borgese L., Gelfi M., Bontempi E., Goudeau P., Geandier G., Thiaudière D., Depero L.E., Young modulus and Poisson ratio measurements of TiO2 thin films deposited with Atomic Layer Deposition, Surf. Coatings Technol., 2012, 206, 2459–2463, DOI: 10.1016/J.SURFCOAT.2011.10.050.
  9. Chen K., Zhou G., Li Q., Tang H., Wang S., Li P., Gu X., Fan Y., In vitro degradation, biocompatibility and antibacterial properties of pure zinc: assessing the potential of Zn as a guided bone regeneration membrane, J. Mater. Chem. B., 2021, 9, 5114–5127, DOI: 10.1039/D1TB00596K.
  10. Dall’Ara E., Grabowski P., Zioupos P., Viceconti M., Estimation of local anisotropy of plexiform bone: Comparison between depth sensing micro-indentation and Reference Point Indentation, J. Biomech., 2015, 48, 4073–4080, DOI: 10.1016/J.JBIOMECH.2015.10.001.
  11. Dileep Kumar V.G., Sridhar M.S., Aramwit P., Krutko V.K., Musskaya O.N., Glazov I.E., Reddy N., A review on the synthesis and properties of hydroxyapatite for biomedical applications, J. Biomater. Sci. Polym. Ed., 2022, 33, 229–261, DOI: 10.1080/09205063.2021.1980985.
  12. Elbehiry A., Al_Dubaib M., Marzouk E., Moussa I., Antibacterial effects and resistance induction of silver and gold nanoparticles against Staphylococcus aureus-induced mastitis and the potential toxicity in rats, Microbiologyopen, 2019, 8, e00698, DOI: 10.1002/mbo3.698.
  13. Eric W., Claus E., Shafaqat S., Frank W., High Cycle Fatigue (HCF) Performance of Ti-6Al-4V Alloy Processed by Selective Laser Melting, Adv. Mater. Res., 2013, 816–817, 134–139, DOI: 10.4028/WWW.SCIENTIFIC.NET/AMR.816-817.134.
  14. Farabi E., Tari V., Hodgson P.D., Rohrer G.S., Beladi H., On the grain boundary network characteristics in a martensitic Ti–6Al–4V alloy, J. Mater. Sci., 2020, 55, 15299–15321, DOI: 10.1007/S10853-020-05075-7/FIGURES/12.
  15. Fotovvati B., Namdari N., Dehghanghadikolaei A., Dai N., Zhang J., Chen Y., Gong H., Dilip J.S., Yang L., Teng C., Stucker B., Influence of small particles inclusion on selective laser melting of Ti-6Al-4V powder, IOP Conf. Ser. Mater. Sci. Eng., 2017, 272, 012024, DOI: 10.1088/1757-899X/272/1/012024.
  16. Fousová M., Vojtěch D., Kubásek J., Jablonská E., Fojt J., Promising characteristics of gradient porosity Ti-6Al-4V alloy prepared by SLM process, Mech. Behav. Biomed. Mater., 2017, 69, 368–376, DOI: 10.1016/J.JMBBM.2017.01.043.
  17. Ginestra P., Ferraro R.M., Zohar-Hauber K., Abeni A., Giliani S., Ceretti E., Selective Laser Melting and Electron Beam Melting of Ti6Al4V for Orthopedic Applications: A Comparative Study on the Applied Building Direction, Mater., 2020, 13, 5584, DOI: 10.3390/MA13235584.
  18. Goel S., Björklund S., Curry N., Govindarajan S., Wiklund U., Gaudiuso C., Joshi S., Axial Plasma Spraying of Mixed Suspensions: A Case Study on Processing, Characteristics, and Tribological Behavior of Al2O3-YSZ Coatings, Appl. Sci., 2020, 10, 5140, DOI: 10.3390/APP10155140.
  19. Greitemeier D., Dalle Donne C., Syassen F., Eufinger J., Melz T., Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V, Mater. Sci. Technol., (United Kingdom), 2016, 32, 629–634, DOI: 10.1179/1743284715Y.0000000053.
  20. Han X., Gelein R., Corson N., Wade-Mercer P., Jiang J., Biswas P., Finkelstein J.N., Elder A., Oberdörster G., Validation of an LDH assay for assessing nanoparticle toxicity, Toxicology, 2011, 287, 99–104, DOI: 10.1016/J.TOX.2011.06.011.
  21. Kahlin M., Ansell H., Moverare J.J., Fatigue behaviour of notched additive manufactured Ti6Al4V with as-built surfaces, Int. J. Fatigue, 2017, 101, 51–60, DOI: 10.1016/J.IJFATIGUE.2017.04.009.
  22. Kang Jie J., Xu Shi B., Wang Dou H., Wang Biao C., Zhu Na L., Delamination failure monitoring of plasma sprayed composite ceramic coatings in rolling contact by acoustic emission, Eng. Fail Anal., 2018, 86, 131–141, DOI: 10.1016/J.ENGFAILANAL.2018.01.005.
  23. Kasperkiewicz K., Major R., Sypien A., Kot M., Dyner M., Major Ł., Byrski A., Kopernik M., Lackner J.M., Antibacterial Optimization of Highly Deformed Titanium Alloys for Spinal Implants, Molecules, 2021, 26, DOI: 10.3390/MOLECULES26113145.
  24. Khatoon Z., McTiernan C.D., Suuronen E.J., Mah T.F., Alarcon E.I., Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention, Heliyon, 2018, 4, 1067, DOI: 10.1016/j.heliyon.2018.e01067.
  25. Komasa S., Kusumoto T., Hayashi R., Takao S., Li M., Yan S., Zeng Y., Yang Y., Hu H., Kobayashi Y., Agariguchi A., Nishida H., Hashimoto Y., Okazaki J., Effect of Argon-Based Atmospheric Pressure Plasma Treatment on Hard Tissue Formation on Titanium Surface, Int. J. Mol. Sci., 2021, 22, 7617, DOI: 10.3390/IJMS22147617.
  26. Li W., Liu W., Li M., Nie J., Chen Y., Xing Z., Nanoscale Plasticity Behavior of Additive-Manufactured Zirconia- Toughened Alumina Ceramics during Nanoindentation, Mater, (Basel, Switzerland), 2020, 13, DOI: 10.3390/MA13041006.
  27. Liu H.J., Zhou L., Liu P., Liu Q.W., Microstructural evolution and hydride precipitation mechanism in hydrogenated Ti–6Al–4V alloy, Int. J. Hydrogen Energy, 2009, 34, 9596–9602, DOI: 10.1016/J.IJHYDENE.2009.09.098.
  28. Luo Q., Cao H., Wang L., Ma X., Liu X., ZnO@ZnS nanorod-array coated titanium: Good to fibroblasts but bad to bacteria, J. Colloid Interface Sci., 2020, 579, 50–60, DOI: 10.1016/J.JCIS.2020.06.055.
  29. Maji A., Choubey G., Microstructure and Mechanical Properties of Alumina Toughened Zirconia (ATZ), Mater Today Proc., 2018, 5, 7457–7465, DOI: 10.1016/J.MATPR.2017.11.417.
  30. Micheletti C., Lee B.E.J., Deering J., Binkley D.M., Coulson S., Hussanain A., Zurob H., Grandfield K., Ti-5Al-5Mo-5V-3Cr bone implants with dual-scale topography: a promising alternative to Ti-6Al-4V, Nanotechnology, 2020, 31, DOI: 10.1088/1361-6528/AB79AC.
  31. Minkiewicz-Zochniak A., Jarzynka S., Iwańska A., Strom K., Iwańczyk B., Bartel M., Mazur M., Pietruczuk-Padzik A., Konieczna M., Augustynowicz-Kopeć E., Olędzka G., Biofilm formation on dental implant biomaterials by staphylococcus aureus strains isolated from patients with cystic fibrosis, Materials, (Basel), 2021, 14, DOI: 10.3390/ma14082030.
  32. Roseti L., Parisi V., Petretta M., Cavallo C., Desando G., Bartolotti I., Grigolo B., Scaffolds for Bone Tissue Engineering: State of the art and new perspectives, Mater. Sci. Eng. C. Mater. Biol. Appl., 2017, 78, 1246–1262, DOI: 10.1016/J.MSEC.2017.05.017.
  33. Ryniewicz A.M., Bojko Ł., Ryniewicz W.I., Microstructural and micromechanical tests of titanium biomaterials intended for prosthetic reconstructions, Acta Bioeng. Biomech., 2016, 18, 111–117, DOI:10.5277/ABB-00193-2014-02.
  34. Sarker A., Tran N., Rifai A., Brandt M., Tran P.A., Leary M., Fox K., Williams R., Rational design of additively manufactured Ti6Al4V implants to control Staphylococcus aureus biofilm formation, Materialia, 2019, 5, 100250, DOI: 10.1016/J.MTLA.2019.100250.
  35. Shimabukuro M., Tsutsumi Y., Nozaki K., Chen P., Yamada R., Ashida M., Doi H., Nagai A., Hanawa T., Chemical and Biological Roles of Zinc in a Porous Titanium Dioxide Layer Formed by Micro-Arc Oxidation, Coatings, 2019, 9, 705, DOI: 10.3390/COATINGS9110705.
  36. Shu T., Zhang Y., Sun G., Pan Y., He G., Cheng Y., Li A., Pei D., Enhanced Osseointegration by the Hierarchical Micro- Nano Topography on Selective Laser Melting Ti-6Al-4V Dental Implants, Front. Bioeng. Biotechnol., 2021, 8, DOI: 10.3389/FBIOE.2020.621601.
  37. Souza J.G.S., Bertolini M.M., Costa R.C., Nagay B.E., Dongari-Bagtzoglou A., Barão V.A.R., Targeting implant- associated infections: titanium surface loaded with antimicrobial, iScience, 2021, 24, 102008, DOI: 10.1016/J.ISCI.2020.102008.
  38. Stępniewski A.A., Analysis of fatigue loads of the knee joint during gait, Acta Bioeng. Biomech. Orig. Pap., 2019, 21, DOI: 10.5277/ABB-01387-2019-03.
  39. Su X., Wang T., Guo S., Applications of 3D printed bone tissue engineering scaffolds in the stem cell field, Regen Ther., 2021, 16, 63–72, DOI: 10.1016/J.RETH.2021.01.007.
  40. Tomala A.M., Słota D., Florkiewicz W., Piętak K., Dylag M., Sobczak-Kupiec A., Tribological Properties and Physiochemical Analysis of Polymer-Ceramic Composite Coatings for Bone Regeneration, Lubr., 2022, 10, 58, DOI: 10.3390/LUBRICANTS10040058.
  41. Valtanen R.S., Yang Y.P., Gurtner G.C., Maloney W.J., Lowenberg D.W., Synthetic and Bone tissue engineering graft substitutes: What is the future?, Injury, 2021, 52, S72–S77, DOI: 10.1016/J.INJURY.2020.07.040.
  42. Varghese G., Moral M., Castro-García M., López-López J.J., Marín-Rueda J.R., Yagüe-Alcaraz V., Hernández-Afonso L., Ruiz-Morales J.C., Canales-Vázquez J., Fabrication and characterisation of ceramics via low-cost DLP 3D printing, Boletín la Soc Española Cerámica y Vidr, 2018, 57, 9–18, DOI: 10.1016/J.BSECV.2017.09.004.
  43. Wang M., Wu Y., Lu S., Chen T., Zhao Y., Chen H., Tang Z., Fabrication and characterization of selective laser melting printed Ti–6Al–4V alloys subjected to heat treatment for customized implants design, Prog. Nat. Sci. Mater. Int., 2016, 26, 671–677, DOI: 10.1016/j.pnsc.2016.12.006.
  44. Wang Z., Wang X., Wang Y., Zhu Y., Liu X., Zhou Q., NanoZnO-modified titanium implants for enhanced antibacterial activity, osteogenesis and corrosion resistance, J. Nanobiotechnology, 2021, 19, DOI: 10.1186/S12951-021-01099-6.
  45. Wojcieszak D., Mazur M., Indyka J., Jurkowska A., Kalisz M., Domanowski P., Kaczmarek D., Domaradzki J., Mechanical and structural properties of titanium dioxide deposited by innovative magnetron sputtering process, Mater. Sci. Pol., 2015, 33, 660–668, DOI: 10.1515/MSP-2015-0084.
  46. Xie S., Guo L., Zhang M., Qin J., Hu R., Durable hydrophobic ceramics of Al2O3–ZrO2 modified by hydrophilic silane with high oil/water separation efficiency, J. Porous Mater., 2021, 284 (28), 1115–1127, DOI: 10.1007/S10934-021-01055-7.
  47. Yabutsuka T., Kidokoro Y., Takai S., Improvement of hydroxyapatite formation ability of titanium-based alloys by combination of acid etching and apatite nuclei precipitation, IET Nanobiotechnology, 2020, 14, 688–694, DOI: 10.1049/IET-NBT.2020.0053.
  48. Yang L., Lassell A., Paiva G., Further study of the electropolishing of Ti 6 Al 4 V parts made via electron beam melting, Mater. Sci., 2015, 1730–1737.
  49. Zandinejad A., Revilla-León M., Methani M.M., Khanlar L.N., Morton D., The Fracture Resistance of Additively Manufactured Monolithic Zirconia vs. Bi-Layered Alumina Toughened Zirconia Crowns When Cemented to Zirconia Abutments. Evaluating the Potential of 3D Printing of Ceramic Crowns: An In Vitro Study, Dent. J., 2021, 9, DOI: 10.3390/DJ9100115.
  50. Zhang Y., Li J., Che S., Electrochemical Science Electropolishing Mechanism of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting, Int. J. Electrochem. Sci., 2018, 13, 4792–4807, DOI: 10.20964/2018.05.79.
DOI: https://doi.org/10.37190/abb-02156-2022-02 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 3 - 17
Submitted on: Nov 21, 2022
|
Accepted on: Feb 22, 2023
|
Published on: May 18, 2024
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Adam Byrski, Magdalena Kopernik, Łukasz Major, Katarzyna Kasperkiewicz, Marcin Dyner, Juergen M. Lackner, David B. Lumenta, Roman Major, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.