References
- B
agi K., Simon L.M., Szajáni B., Immobilization and characterization of porcine pancreas lipase, Enzyme Microb. Tech., 1997, 20, 531–535. - C
asas -Godoy L., Duquesne S., Bordes F., Sandoval G., Marty A., Lipases: An Overview, [in:] G. Sandoval (Eds.), Lipases and Phospholipases. Methods in Molecular Biology (Methods and Protocols), Humana Press, 2012, 861. - C
hladek W., Czerwik I., Mechanical properties of temporomandibular joint disc on the basis of porcine preparation investigations, Acta Bioeng. Biomech., 2008, 10 (4), 15–20. - D
ong H., Li J., Li Y., Hu L., Luo D., Improvement of catalytic activity and stability of lipase by immobilization on organobentonite, Chem. Eng. J., 2012, 181–182, 590–596. - E
lsheikh A., Kassem W., Jones S.W., Strain-rate sensitivity of porcine and ovine corneas, Acta Bioeng. Biomech., 2011, 13 (2), 25–36. - G
uerrand D., Lipases industrial applications: focus on food and agroindustries, OCL 2017, 24 (4), D403. - L
ei L., Bai Y., Li Y., Yi L., Yan Y., Xia C., Study on immobilization of lipase onto magnetic microspheres with epoxy groups, J. Magn. Magn. Mater., 2009, 321, 252–258. - L
i X., Zhu H., Feng J., Zhang J., Deng X., Zhou B., Zhang H., Xue D., Li F., Nigel J.M., Li Y, Peng Y., One-pot polylol synthesis of graphene decorated with size- and densitytunable Fe3O4 nanoparticles for porcine pancreatic lipase immobilization, Carbon, 2013, 60, 488–497. - L
i Y., Jing T., Xu G., Tian J., Dong M., Shao Q., Wang B., Wang Z., Zheng Y., Yang C., Guo Z., 3-D magnetic graphene oxide-magnetite poly(vinyl alcohol) nanocomposite substrates for immobilizing enzyme, Polymer, 2018, 149, 13–22. - L
ykidis A., Mougios V., Arzoglou P., Kinetics of the twostep hydrolysis of triacylglycerol by pancreatic lipases, Eur. J. Biochem., 1995, 230, 892–898. - M
endes A.A., Oliveira P.C.,de Castro H.F., Properties and biotechnological applications of porcine pancreatic lipase, J. Mol. Catal. B: Enzym., 2012, 78, 119–134. - M
iłek J., Application of the new method to determine of the kinetic parameters of inulin hydrolysis by exo-inulinase Aspergillus niger, J. Therm. Anal. Calorim., 2021, DOI: 10.1007/s10973-020-10495-3. - M
iłek J., Calculation of temperature optimum as well as activation and deactivation energy for the olive oil hydrolysis with porcine pancreas lipase, Przem. Chem., 2020, 99 (4), 585–587. - M
iłek J., Determination of the activation energies and optimum temperature for the hydrolysis of p-nitrophenyl palmitate catalyzed by lipases, Przem. Chem., 2021, 100 (1), 103–104. - M
iłek J., Determination the optimum temperature and activation energy for the hydrolysis of starch catalyzed by α-amylase Bacillus licheniformis, Przem. Chem., 2020, 99 (6), 880–881. - M
iłek J., Determination the optimum temperatures and activation energies of inulin hydrolysis by endo-inulinase Aspergillus niger, Chem. Proc. Eng., 2020, 41 (3), 229–236. - M
iłek J., Estimation of the kinetic parameters for H2O2 enzymatic decomposition and for catalase deactivation, Braz. J. Chem. Eng., 2018, 35 (3), 995–1004. - M
iłek J., Thermodynamics and kinetics of thermal deactivation of catalase Aspergillus niger, Pol. J. Chem. Technol., 2020, 22 (2), 67–'372. - N
ozawa F., Yalniz M., Saruc M., Standop J., Egami H., Pour P.M., Effects of fungal pancreatic enzymes on the function of islet cells in syrian golden hamsters, JOP. J. Pancreas (Online), 2013, 14 (3), 228–236. - O
lusesan A.T., Azura L.K., Forghani B., Bakar F.A., Mohamed A.K.S., Radu S., Manap M.Y.A., Saari N., Purification, characterization and thermal inactivation kinetics of a non-regioselective thermostable lipase from a genotypically identified extremophilic Bacillus subtilis NS 8, New Biotechnology, 2011, 28, 738–745. - P
ilarek M, Szewczyk K.W., Kinetic model of 1,3-specific triacylglycerols alcoholysis catalyzed by lipases, J. Biotech., 2007, 127, 736–744. - S
chmitke J.L., Wescott C.R., Klibanow A.M., The mechanistic dissection of the plunge in enzymatic activity upon transition from water to anhydrous solvents, J. Am. Chem. Soc., 1996, 118, 3360–3365. - S
toytcheva M., Montero G., Zlatev R., León J.Á., Gochev V., Analytical methods for lipases activity determination: A review, Curr. Anal. Chem., 2012, 8, 400–407. - S
totz M., Barth D.A., Riedl J.M., Asamer E., Klocker E.V., Kornprat P., Hutterer G.C., Prinz F., Lackner K., Stöger H., Gerger A., Pichler M., The lipase/amylase ratio (LAR) in peripheral blood might represent a novel prognostic marker in patients with surgically resectable pancreatic cancer, Cancers, 2020, 12, 1798, 1–10. - T
sujita T., Okuda H., Effect of bile salts on the interfacial inactivation of pancreatic carboxylester lipase, J. Lipid Research, 1990, 31, 831–838. - V
eljković D.Ž., Ranković V.J., Panković S.B., Rosić M.A., Kojić M.R., Hyperelastic behavior of porcine aorta segment under extension-inflation tests fitted with various phenomenological models, Acta Bioeng. Biomech., 2014, 16 (3), 37–45. - W
ojcik M., Miłek J., A new method to determine optimum temperature and activation energies for enzymatic reactions, Bioprocess Biosyst. Eng., 2016, 39, 1319–1323. - W
ychowański M., Obrębski M., Rąpała K., Wit A., Gajewski J., Marczak K., Strength of proximal humeral fraction fixation employing implants of various types – a study of porcine bones, Acta Bioeng. Biomech., 2008, 10 (3), 29–35.