Have a personal or library account? Click to login
Analysis of the antibacterial properties of polycaprolactone modified with graphene, bioglass and zinc-doped bioglass Cover

Analysis of the antibacterial properties of polycaprolactone modified with graphene, bioglass and zinc-doped bioglass

Open Access
|May 2021

References

  1. Chen H., Gao D., Wang B., Zhao R., Guan M., Zheng L., Zhou X., Chai Z., Feng W., Graphene oxide as an anaerobic membrane scaffold and antagonistic effects against pathogenic E. coli and S. aureus, Nanotechnology, 2014, 25 (16), DOI: 10.1088/0957-4484/25/16/165101.
  2. Ciołek L., Karaś J., Olszyna A.R., Zaczyńska E., Czarny A., Żywicka B., Szamałek K., In Vitro Studies of Antibacterial Activity of Bioglasses Releasing Ag+, Key Eng. Mater., 2011, 493–494, 108–113, DOI: 10.4028/www.scientific.net/kem.493-94.108.
  3. Dias A.M., da Silva F.G., Monteiro A.P.F., Pinzón-García A.D., Sinisterra R.D., Cortés M.E., Polycaprolactone nanofibers loaded oxytetracycline hydrochloride and zinc oxide for treatment of periodontal disease, Mater Sci. Eng. C. Mater., Biol. Appl., 2019, 103, 109798, DOI: 10.1016/j.msec.2019.109798.
  4. Dziadek M., Zagrajczuk B., Menaszek E., Wegrzynowicz A., Pawlik J., Cholewa-Kowalska K., Gel-derived SiO2–CaO– P2O5 bioactive glasses and glass-ceramics modified by SrO addition, Ceram. Int., 2016, 42 (5), 58, 42–57, DOI: 10.1016/j.ceramint.2015.12.128.
  5. Fonseca G.F.d., Avelino S.d.O.M., Mello D.d.C.R., Prado R.F.d., Campos T.M.B., Vasconcellos L.M.R.d., Triches E.d.S., Borges A.L.S., Scaffolds of PCL combined to bioglass: synthesis, characterization and biological performance, J. Mater. Sci. Mater. Med., 2020, 31 (41), DOI: 10.1007/s10856-020-06382-w.
  6. Fredenberg S., Wahlgren M., Reslow M., Axelsson A., The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems – A review, Int. J. Pharm., 2011, 415 (1–2), 34–52, https://doi.org/10.1016/j.ijpharm.2011.05.049.
  7. Han J.K., Marple B.F., Smith T.L., Murr A.H., Lanier B.J., Stambaugh J.W., Mugglin A.S., Effect of steroid-releasing sinus implants on postoperative medical and surgical interventions: an efficacy meta-analysis, Int. Forum Allergy and Rh., 2012 (2), 271–279, DOI: 10.1002/alr.21044.
  8. Hu S., Chang J., Liu M., Ning C., Study on antibacterial effect of 45S5 Bioglass®, J. Mater Sci. Mater Med., 2009, 20, 281–286, DOI: 10.1007/s10856-008-3564-5.
  9. Ji H., Sun H., Qu X., Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges, Adv. Drug. Deliv. Rev., 2016, 105 (Pt B), 176–189, DOI:10.1016/j.addr.2016.04.009.
  10. Karatas A., Pehlivanoglu F., Salviz M., Kuvat N., Cebi I.T., Dikmen B., Sengoz G., The effects of the time of intranasal splinting on bacterial colonization, postoperative complications, and patient discomfort after septoplasty operations, Braz. J. Otorhinolar., 2016, 82 (6), 654–661, DOI:10.1016/j.bjorl.2015.11.008.
  11. Kurantowicz N., Sawosz E., Jaworski S., Kutwin M., Strojny B., Wierzbicki M., Szeliga J., Hotowy A., Lipińska L., Koziński R., Jagiełło J., Chwalibog A., Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica, Nanoscale Res. Lett., 2015, 10 (23), DOI: 10.1186/s11671-015-0749-y.
  12. Lina G., Boutite F., Tristan A., Bes M., Etienne J., Vandenesch F., Bacterial Competition for Human Nasal Cavity Colonization: Role of Staphylococcal agr Alleles, Appl. Environ. Microb., 2003, 69 (1), 18–23, DOI: 10.1128/AEM.69.1.18-23.200.
  13. Liu D., Nie W., Li D., Wang W., Zheng L., Zhang J., Zhang J., Peng C., Mo X., He C., 3D printed PCL/SrHA scaffold for enhanced bone regeneration, Chem. Eng. J., 2019, 362 (15), 269–279, DOI:10.1016/j.cej.2019.01.015.
  14. Liu S., Zeng T.H., Hofmann M., Burcombe E., Wei J., Jiang R., Kong J., Chen Y., Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress, ACS Nano, 2011, 5 (9), 6971–6980.
  15. Liu Y., He L., Mustapha A., Li H., Hu Z., Lin M., Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7, J. Appl. Microbiol., 2009, 107, 1193–1201, DOI: 10.1111/j.1365-2672.2009.04303.x.
  16. Ma J., Zhang J., Xiong Z., Yong Y., Zhao X.S., Preparation, characterization and antibacterial properties of silver-modified graphene oxide, J. Mater Chem., 2011, 21, 3350–3352.
  17. Mangadlao J.D., Santos C.M., Felipe M.J.L., Leon A.C.C., Rodrigues D.F., Advincula R.C., On the antibacterial mechanism of graphene oxide (GO) Langmuir–Blodgett films, Chem. Commun., 2015, 51 (14), 2886–2889.
  18. Miola M., Verné E., Vitale-Brovarone C., Baino F, Antibacterial Bioglass-Derived Scaffolds: Innovative Synthesis Approach and Characterization, Int. J. Appl. Glass Sci., 2016, 7, 238–247, DOI:10.1111/ijag.12209.
  19. Rajzer I., Kurowska A., Jabłoński A., Kwiatkowski R., Piekarczyk W, Hajduga M.B., Kopeć J., Sidzina M., Menaszek E., Scaffolds modified with graphene as future implants for nasal cartilage, J. Mater. Sci., 2020, 55 (9), 4030–4042.
  20. Rajzer I., Dziadek M., Kurowska A., Cholewa-Kowalska K., Ziąbka M., Menaszek E., Douglas T.E.L., Electrospun polycaprolactone membranes with Zn-doped bioglass for nasal tissues treatment, J. Mater. Sci. Mater. Med, 2019, 30 (7), 80, DOI: 10.1007/s10856-019-6280-4.
  21. Rapacz-Kmita A., Szaraniec B., Mikołajczyk M., Stodolak-Zych E., Dzierzkowska E., Gajek M., Dudek P., Multifunctional biodegradable polymer/clay nanocomposites with antibacterial properties in drug delivery systems, Acta Bioeng. Biomech., 2020, 22 (2), DOI: 10.37190/abb-01523-2019-03
  22. Rohr N., Nebe J.B., Schmidli F., Müller P., Weber M., Fischer H., Fischer J., Influence of bioactive glass-coating of zirconia implant surfaces on human osteoblast behavior in vitro, Dent. Mater., 2019, 35 (6), 862–870, DOI:10.1016/j.dental.2019.02.029.
  23. Szponder T., Stodolak-Zych E., Polkowska I., Sobczyńska-Rak A., Impact of a pulsed magnetic field on selected polymer implant materials, Acta Bioeng. Biomech., 2019, 21 (1), DOI: 10.5277/ABB-01253-2018-04.
  24. Turek A., Stoklosa K., Borecka A., Paul-Samojedny M., Kaczmarczyk B., Marcinkowski A., Kasperczyk J., Designing Biodegradable Wafers Based on Poly(L-lactide-coglycolide) and Poly(glycolide-co-ε-caprolactone) for the Prolonged and Local Release of Idarubicin for the Therapy of Glioblastoma Multiforme, Pharm. Res., 2020, 37 (5), 90, DOI: 10.1007/s11095-020-02810-2.
  25. Woodruff M.A., Hutmacher D.W., The return of a forgotten polymer – Polycaprolactone in the 21st century, Prog. Polym. Sci., 2010, 35 (10), 1217–1256.
  26. Wu F., Wei J., Liu C., O’Neill B., Ngothai Y., Fabrication and properties of porous scaffold of zein/PCL biocomposite for bone tissue engineering, Compos. Part B-Eng., 2012, 43 (5), 2192–2197.
  27. Xiaoyi X., Qingbiao Y., Yongzhi W., Haijun Y., Xuesi C., Xiabin J., Biodegradable electrospun poly(l-lactide) fibers containing antibacterial silver nanoparticles, Eur. Polym. J., 2016, 42 (9), 2081–2087, DOI:10.1016/j.eurpolymj.2006.03.032.
  28. Zanni E., Bruni E., Chandraiahgari C.R., De Bellis,G., Santangelo M.G., Leone M., Bregnocchi A., Mancini P., Sarto M.S., Uccelletti D., Evaluation of the antibacterial power and biocompatibility of zinc oxide nanorods decorated graphene nanoplatelets: new perspectives for antibiodeteriorative approaches, J. Nanobiotechnol., 2017, 15, 57, DOI: 10.1186/s12951-017-0291-4.
  29. Zhan S., Zhu D., Ma S., Yu W., Jia Y., Li Y., Yu H., Shen Z., Highly efficient removal of pathogenic bacteria with magnetic graphene composite, ACS Appl. Mater Interfaces, 2015, 7 (7), 4290–4298.
DOI: https://doi.org/10.37190/abb-01766-2020-03 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 131 - 138
Submitted on: Dec 3, 2020
Accepted on: Apr 16, 2021
Published on: May 2, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Maciej B. Hajduga, Rafał Bobiński, Mieczysław Dutka, Izabela Ulman-Włodarz, Jan Bujok, Celina Pająk, Michał Ćwiertnia, Anna Kurowska, Michał Dziadek, Izabella Rajzer, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.