Have a personal or library account? Click to login
Analysis of the antibacterial properties of polycaprolactone modified with graphene, bioglass and zinc-doped bioglass Cover

Analysis of the antibacterial properties of polycaprolactone modified with graphene, bioglass and zinc-doped bioglass

Open Access
|May 2021

Abstract

Purpose: Innovative biomedical filaments for 3D printing in the form of short and biodegradable composite sticks modified with various additives were used to prepare biomaterials for further nasal implants. As the respiratory tract is considered to be potentially exposed to contamination during the implantation procedure there is a need to modify the implant with an antibacterial additives. The purpose of this work was to analyze the effect of biodegradable polymer – polycaprolactone (PCL) modification with various additives on its antibacterial properties.

Methods: PCL filament modified with graphene (0.5, 5, 10% wt.), bioglass (0.4% wt.) and zinc-doped bioglass (0.4% wt.) were used to print spatial biomaterials using FDM 3D printer. Pure polymer biomaterials without additives were used as reference samples. The key task was to assess the antimicrobial impact of the prepared biomaterials against the following microorganisms: Staphylococcus aureus ATCC 25293, Escherichia coli ATCC 25922, Candida albicans ATCC 10231.

Results: The research results point to a significant antibacterial efficacy of the tested materials against S. aureus and C. albicans, which, however, seems to decrease with increasing graphene content in the filaments. A complete lack of antibacterial efficacy against E. coli was determined.

Conclusions: The tested biomaterials have important antibacterial properties, especially against C. albicans. The obtained results showed that biomaterials made of modified filaments can be successfully used in implantology, where a need to create temporary tissue scaffolds occurs.

DOI: https://doi.org/10.37190/abb-01766-2020-03 | Journal eISSN: 2450-6303 | Journal ISSN: 1509-409X
Language: English
Page range: 131 - 138
Submitted on: Dec 3, 2020
Accepted on: Apr 16, 2021
Published on: May 2, 2021
Published by: Wroclaw University of Science and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Maciej B. Hajduga, Rafał Bobiński, Mieczysław Dutka, Izabela Ulman-Włodarz, Jan Bujok, Celina Pająk, Michał Ćwiertnia, Anna Kurowska, Michał Dziadek, Izabella Rajzer, published by Wroclaw University of Science and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.