Barkalov, A. A. and Barkalov Jr., A. A. (2005). Design of Mealy finite-state machines with the transformation of object codes, International Journal of Applied Mathematics and Computer Science15(1): 151–158.
Barkalov, A., Titarenko, L. and Krzywicki, K. (2021b). Structural decomposition in FSM design: Roots, evolution, current state—A review, Electronics10(10): 1–44.10.3390/electronics10101174
Barkalov, A., Titarenko, L., Krzywicki, K. and Saburova, S. (2020a). Improving the characteristics of multi-level LUT-based Mealy FSMs, Electronics9(11): 1–34.10.3390/electronics9111859
Barkalov, A., Titarenko, L., Mazurkiewicz, M. and Krzywicki, K. (2021a). Improving LUT count of FPGA-based sequential blocks, Bulletin of the Polish Academy of Sciences: Technical Sciences69(2): 1–12, DOI: 10.24425/bpasts.2021.136728.
Barkalov, A., Titarenko, L. and Mielcarek, K. (2018). Hardware reduction for LUT-based Mealy FSMs, International Journal of Applied Mathematics and Computer Science28(3): 595–607, DOI: 10.2478/amcs-2018-0046.10.2478/amcs-2018-0046
Barkalov, A., Titarenko, L. and Mielcarek, K. (2020b). Improving characteristics of LUT-based Mealy FSMs, International Journal of Applied Mathematics and Computer Science30(4): 745–759, DOI: 10.34768/amcs-2020-0055.
Barkalov, A., Titarenko, L., Mielcarek, K. and Chmielewski, S. (2020c). Logic Synthesis for FPGA-Based Control Units -Structural Decomposition in Logic Design, Lecture Notes in Electrical Engineering, Vol. 636, Springer, Berlin, DOI: 10.1007/978-3-030-38295-7.10.1007/978-3-030-38295-7
Borowczak, M. and Vemuri, R. (2013). Secure controllers: Requirements of S*FSM, 2013 IEEE 56th International Midwest Symposium on Circuits and Systems (MWSCAS), Columbus, USA, pp. 553–557, DOI: 10.1109/MWSCAS.2013.6674708.10.1109/MWSCAS.2013.6674708
Brayton, R. and Mishchenko, A. (2010). ABC: An academic industrial-strength verification tool, in T. Touili et al. (Eds), Computer Aided Verification, Springer, Berlin/Heidelberg, pp. 24–40.10.1007/978-3-642-14295-6_5
Das, N. and Panchanathan, A. (2018). FPGA implementation of reconfigurable finite state machine with input multiplexing architecture using Hungarian method, International Journal of Reconfigurable Computing2018, Article ID: 6831901, DOI: 10.1155/2018/6831901.10.1155/2018/6831901
Feng, W., Greene, J. and Mishchenko, A. (2018). Improving FPGA performance with a S44 LUT structure, FPGA’18: Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, Monterey, USA, pp. 61–66, DOI: 10.1145/3174243.3174272.10.1145/3174243.3174272
Kubica, M. and Kania, D. (2017). Area-oriented technology mapping for LUT-based logic blocks, International Journal of Applied Mathematics and Computer Science27(1): 207–222, DOI: 10.1515/amcs-2017-0015.10.1515/amcs-2017-0015
Kubica, M., Opara, A. and Kania, D. (2021). Technology Mapping for LUT-Based FPGA, Lecture Notes in Electrical Engineering, Vol. 13, Springer International Publishing, Cham.
Machado, L. and Cortadella, J. (2020). Support-reducing decomposition for FPGA mapping, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems39(1): 213–224, DOI: 10.1109/TCAD.2018.2878187.10.1109/TCAD.2018.2878187
Marwedel, P. (2018). Embedded System Design: Embedded Systems Foundations of Cyber-Physical Systems, and the Internet of Things, 3rd Edn, Springer International Publishing, Cham, DOI: 10.1007/978-3-319-56045-8.10.1007/978-3-319-56045-8
Sasao, T. and Mishchenko, A. (2009). LUTMIN: FPGA logic synthesis with MUX-based and cascade realizations, International Workshop on Logic Synthesis, Berkeley, USA, pp. 310–316.
Senhadji-Navaro, R. and Garcia-Vargas, I. (2015). High-speed and area-efficient reconfigurable multiplexer bank for RAM-based finite state machine implementations, Journal of Circuits, Systems and Computers24(07): 1550101:1–1550101:15, DOI: 10.1142/S0218126615501017.10.1142/S0218126615501017
Skliarova, I., Sklyarov, V. and Sudnitson, A. (2012). Design of FPGA-based Circuits using Hierarchical Finite State Machines, TUT Press, Tallinn.10.1109/IranianCEE.2013.6599683
Sklyarov, V. (2000). Synthesis and implementation of RAM-based finite state machines in FPGAs, in R.W. Hartenstein and H. Grünbacher (Eds), Field-Programmable Logic and Applications: The Roadmap to Reconfigurable Computing, Springer, Berlin/Heidelberg, pp. 718–727.10.1007/3-540-44614-1_76
Sklyarov, V., Skliarova, I., Barkalov, A. and Titarenko, L. (2014). Synthesis and Optimization of FPGA-Based Systems, Lecture Notes in Electrical Engineering, Vol. 294, Springer-Verlag, Berlin.
Solovjev, V. and Czyzy, M. (1999). Refined CPLD macrocells architecture for effective FSM implementation, Proceedings of the 25th EUROMICRO Conference, Milan, Italy, Vol. 1, pp. 102–109.
Sutter, G., Todorovich, E., López-Buedo, S. and Boemo, E. (2002). Low-power FSMs in FPGA: Encoding alternatives, in B. Hochet et al. (Eds), Integrated Circuit Design: Power and Timing Modeling, Optimization and Simulation, Springer-Verlag, Berlin/Heidelberg, pp. 363–370.10.1007/3-540-45716-X_36
Tiwari, A. and Tomko, K. (2004). Saving power by mapping finite-state machines into embedded memory blocks in FPGAs, Proceedings of the conference on Design, Automation and Test in Europe, Paris, France, Vol. 2, pp. 916–921.
Trimberg, S. (2015). Three ages of FPGA: A retrospective on the first thirty years of FPGA Technology, IEEE Proceedings103(3): 318–331.10.1109/JPROC.2015.2392104