Have a personal or library account? Click to login

Fast and Smooth Trajectory Planning for a Class of Linear Systems Based on Parameter and Constraint Reduction

Open Access
|Mar 2022

References

  1. Aguilar-Ibanez, C. and Suarez-Castanon, M.S. (2019). A trajectory planning based controller to regulate an uncertain 3D overhead crane system, International Journal of Applied Mathematics and Computer Science 29(4): 693–702, DOI: 10.2478/amcs-2019-0051.10.2478/amcs-2019-0051
  2. Berselli, G., Balugani, F., Pellicciari, M. and Gadaleta, M. (2016). Energy-optimal motions for servo-systems: A comparison of spline interpolants and performance indexes using a CAD-based approach, Robotics and Computer-Integrated Manufacturing 40: 55–65.10.1016/j.rcim.2016.01.003
  3. Boor, C.D. and Fix, G.J. (1973). Spline approximation by quasi-interpolants, Journal of Approximation Theory 8(1): 19–45.10.1016/0021-9045(73)90029-4
  4. Cheon, H. and Kim, B.K. (2019). Online bidirectional trajectory planning for mobile robots in state-time space, IEEE Transactions on Industrial Electronics 66(6): 4555–4565.10.1109/TIE.2018.2866039
  5. Cui, L., Wang, H. and Chen, W. (2020). Trajectory planning of a spatial flexible manipulator for vibration suppression, Robotics and Autonomous Systems 123: 1–11, Paper no. 103316.
  6. Desai, A., Collins, M. and Michael, N. (2019). Efficient kinodynamic multi-robot replanning in known workspaces, 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada, pp. 1021–1027.
  7. Fahroo, F. and Ross, I.M. (2000). Direct trajectory optimization by a Chebyshev pseudospectral method, Proceedings of the 2000 American Control Conference, Chicago, USA,Vol.6, pp. 3860–3864.
  8. Fang, Y., Qi, J., Hu, J., Wang, W. and Peng, Y. (2020). An approach for jerk-continuous trajectory generation of robotic manipulators with kinematical constraints, Mechanism and Machine Theory 153: 1–22, Paper no. 103957.
  9. Gong, Q., Kang, W. and Ross, I.M. (2006). A pseudospectral method for the optimal control of constrained feedback linearizable systems, IEEE Transactions on Automatic Control 51(7): 1115–1129.10.1109/TAC.2006.878570
  10. Heidari, H. and Saska, M. (2020). Trajectory planning of quadrotor systems for various objective functions, Robot-ica 39(1): 137–152.10.1017/S0263574720000247
  11. Kim, J. (2020). Trajectory generation of a two-wheeled mobile robot in an uncertain environment, IEEE Transactions on Industrial Electronics 67(7): 5586–5594.10.1109/TIE.2019.2931506
  12. Kroger, T. and Wahl, F.M. (2010). Online trajectory generation: Basic concepts for instantaneous reactions to unforeseen events, IEEE Transactions on Robotics 26(1): 94–111.10.1109/TRO.2009.2035744
  13. Li, J., Ran, M. and Xie, L. (2021). Efficient trajectory planning for multiple non-holonomic mobile robots via prioritized trajectory optimization, IEEE Robotics and Automation Letters 6(2): 405–412.10.1109/LRA.2020.3044834
  14. Liu, C., Zhang, C. and Xiong, F. (2020). Multistage cooperative trajectory planning for multimissile formation via bi-level sequential convex programming, IEEE Access 8: 22834–22853.10.1109/ACCESS.2020.2967873
  15. Liu, P., Han, Y., Wang, W., Liu, X. and Liu, J. (2018). Maneuvering trajectory planning during the whole phase based on piecewise Radau pseudospectral method, Proceedings of the 37th Chinese Control Conference, Wuhan, China, pp. 4627–4632.
  16. Liu, Y., Zhang, Z., Wu, Z., Liu, F. and Li, X. (2021). Multiobjective preimpact trajectory-planning of space manipulator for self-assembling a heavy payload, International Journal of Advanced Robotic Systems 18(1): 1–22, Paper no. 1729881421990285.
  17. Mercy, T., Hostens, E. and Pipeleers, G. (2018). Online motion planning for autonomous vehicles in vast environments, 2018 IEEE 15th International Workshop on Advanced Motion Control (AMC), Tokyo, Japan, pp. 114–119.
  18. Muscio, G., Pierri, F., Trujillo, M.A., Cataldi, E., Antonelli, G., Caccavale, F., Viguria, A., Chiaverini, S., and Ollero, A. (2018). Coordinated control of aerial robotic manipulators: Theory and experiments, IEEE Transactions on Control Systems Technology 26(4): 1406–1413.10.1109/TCST.2017.2716905
  19. Park, J. and Kim, H.J. (2021). Online trajectory planning for multiple quadrotors in dynamic environments using relative safe flight corridor, IEEE Robotics and Automation Letters 6(2): 659–666.10.1109/LRA.2020.3047786
  20. Powell, M.J.D. (1981). Approximation Theory and Methods, Cambridge University Press, Cambridge.10.1017/CBO9781139171502
  21. Qian, Y., Yuan, J. and Wan, W. (2020). Improved trajectory planning method for space robot-system with collision prediction, Journal of Intelligent and Robotic System 99(11): 289–302.10.1007/s10846-019-01113-y
  22. Rousseau, G., Maniu, C.S., Tebbani, S., Babel, M. and Martin, N. (2019). Minimum-time B-spline trajectories with corridor constraints: Application to cinematographic quadrotor flight plans, Control Engineering Practice 89: 190–203.10.1016/j.conengprac.2019.05.022
  23. Schoenberg, I.J. (1969). Approximations with Special Emphasis on Spline Functions, Academic Press, Madison.
  24. Spedicato, S. and Notarstefano, G. (2018). Minimum-time trajectory generation for quadrotors in constrained environments, IEEE Transactions on Control Systems Technology 26(4): 1335–1344.10.1109/TCST.2017.2709268
  25. Sun, K. and Liu, X. (2021). Path planning for an autonomous underwater vehicle in a cluttered underwater environment based on the heat method, International Journal of Applied Mathematics and Computer Science 31(2): 289–301, DOI: 10.34768/amcs-2021-0020.
  26. Tatematsu, N. and Ohnishi, K. (2003). Tracking motion of mobile robot for moving target using NURBS curve, IEEE International Conference on Industrial Technology, Maribor, Slovenia, Vol. 1, pp. 245–249.
  27. Tho, H.D., Kaneshige, A. and Terashima, K. (2020). Minimum-time s-curve commands for vibration-free transportation of an overhead crane with actuator limits, Control Engineering Practice 98: 1–12, Paper no. 104390.
  28. Wang, M., Xiao, J., Zeng, F. and Wang, G. (2020). Research on optimized time-synchronous online trajectory generation method for a robot arm, Robotics and Autonomous Systems 126: 1–12, Paper no. 103453, DOI: 10.1016/j.robot.2020.103453.10.1016/j.robot.2020.103453
  29. Wang, Y., Ueda, K. and Bortoff, S.A. (2013). A Hamiltonian approach to compute an energy efficient trajectory for a servomotor system, Automatica 49(12): 3550–3561.10.1016/j.automatica.2013.09.019
  30. Yu, L., Wang, K., Zhang, Q. and Zhang, J. (2020). Trajectory planning of a redundant planar manipulator based on joint classification and particle swarm optimization algorithm, Multibody System Dynamic 50(4): 25–43.10.1007/s11044-019-09720-1
  31. Zhang, S., Zanchettin, A.M., Villa, R. and and Dai, S. (2020). Real-time trajectory planning based on joint-decoupled optimization in human-robot interaction, Mechanism and Machine Theory 144, Paper no. 103664, DOI: 10.1016/j.mechmachtheory.2019.103664.10.1016/j.mechmachtheory.2019.103664
DOI: https://doi.org/10.34768/amcs-2022-0002 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 11 - 21
Submitted on: Jul 28, 2021
Accepted on: Dec 6, 2021
Published on: Mar 31, 2022
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Guangyu Liu, Shangliang Wu, Ling Zhu, Jiajun Wang, Qiang Lv, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.