Have a personal or library account? Click to login

A hierarchy of finite state machines as a scenario player in interactive training of pilots in flight simulators

Open Access
|Dec 2021

References

  1. Adrego da Rocha, A.M. (1999). Synthesis and simulation of reprogrammable control units from hierarchical specification, PhD thesis, University of Aveiro.
  2. Barkalov, A., Titarenko, L. and Mielcarek, K. (2020). Improving characteristics of LUT-based Mealy FSMs, International Journal of Applied Mathematics Computer Science 30(4): 745–759, DOI: 10.34768/amcs-2020-0055.
  3. Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis, Springer, New York, DOI: 10.1007/978-1-4757-4286-2.10.1007/978-1-4757-4286-2
  4. Bernard, M. (2002). Examining a Metric for Predicting the Accessibility of Information within Hypertext Structures,PhD thesis, Wichita State University, Wichita.
  5. Bower, M., Howe, C., McCredie, N., Robinson, A. and Grover, D. (2014). Augmented reality in education—Cases, places, and potentials, Educational Media International 51(1): 1–15.10.1080/09523987.2014.889400
  6. Brown, L. (2017). The next generation classroom: Transforming aviation training with augmented reality, National Training Aircraft Symposium NTAS 2.0, Daytona Beach, USA, https://commons.erau.edu/ntas/2017/presentations/40/.
  7. Camilleri, M. (2018). Travel Marketing, Tourism Economics and the Arline Product, Springer Nature, Cham, Chapter 12, pp. 191–204, DOI: 10.1007/978-3-319-49849-2-12.
  8. Caudell, T. and Mizell, D.W. (1992). Augmented reality: An application of heads-up display technology to manual manufacturing processes, Proceedings of the 25th Hawaii International Conference on System Sciences, Kauai, USA, Vol. 2, pp. 659–669
  9. Cerqueira, C. and Kirner, C. (2012). Developing educational applications with a nonprogramming augmented reality authoring tool, World Conference on Educational Multimedia, Hypermedia and Telecommunications (EDMEDIA), Denver, USA, pp. 2816–2825.
  10. Cox, J. (2020). Training, Checking and Recency, Safety Resources of the EASA Community, Section: Air Operations, European Union Aviation Safety Agency, Cologne, https://www.easa.europa.eu/community/content/training-checking-and-recency.
  11. Cyran, K.A., Moczulski, W., Myszor, D., Paszkuta, M., Ruranski, A., Kalisch, M., Cyran, J., Adamczyk, M. and Timofiejczuk, A. (2018a). Immersive human-machine interface for controlling the operation of the Telerescuer robot, International Journal of Advances in Computer Science and Its Applications 8(1): 322–326.
  12. Cyran, K. A., Paszkuta, M., Myszor, D., Rohn, T., Drosik, T., Adamczyk, M. and Moczulski, W. (2018b). UAV-based anti-smog monitoring of the quality of exhausts from private chimneys in urban areas, Towards a Circular Economy: 7th International Symposium and Environmental Exhibition, Vienna, Austria.
  13. Dhaliwal, A. (2019). Augmented Reality for the Aviation Industry: Getting Ready for Take Off, Atheer, Santa Clara, https://content.atheerair.com/hubfs/eBooks/Aviation-eBook.pdf?t=1541468052547.
  14. Eschen, H., Kötter, T., Rodeck, R., Harnisch, M. and Schüppstuhl, T. (2018). Augmented and virtual reality for inspection and maintenance processes in the aviation industry, Procedia Manufacturing 19: 156–163, DOI: 10.1016/j.promfg.2018.01.022.10.1016/j.promfg.2018.01.022
  15. FAA (2020). Benefit-Cost Analysis, Federal Aviation Administration, Washington, https://www.faa.gov/regulations_policies/policy_guidance/benefit_cost/.
  16. Feiner, S., Macintyre, B. and Seligmann, D. (1993). Knowledge-based augmented reality, Communications of the ACM 36(7): 53–62, DOI:10.1145/159544.159587.10.1145/159544.159587
  17. Ferdania, D.F., Irawati, Garminia, H., Akhmaloka and Rachmansyah, K.A. (2021). Minimal state automata for detecting a β globin gene mutation, International Journal of Applied Mathematics and Computer Science 31(2): 337–351, DOI: 10.34768/amcs-2021-0023.
  18. Gagné, R.M. (1965). The Conditions of Learning, Holt, Rinehart and Winston, New York.
  19. Giantamidis, G., Tripakis, S. and Basagianis, S. (2019). Learning Moore machines from input-output traces, International Journal on Software Tools for Technology Transfer 23: 1–29, DOI: 10.1007/s10009-019-00544-0.10.1007/s10009-019-00544-0
  20. Goel, A. (2018). Augmented reality in aviation: Changing the face of the sector through training and simulated experience, eLearning Industry, https://elearningindustry.com/augmented-reality-in-aviation-changing-face-sector-training-simulated-experience.
  21. Grzegorczyk, T.,Śliwinski, R. and Kaczmarek, J. (2019). Attractiveness of augmented reality to consumers, Technology Analysis and Strategic Management 31(11): 1257–1269(13), DOI: 10.1080/09537325.2019.1603368.10.1080/09537325.2019.1603368
  22. Haritos, T. and Macchiarella, N.D. (2005). A mobile application of augmented reality for aerospace maintenance training, 24th Digital Avionics Systems Conference, Washington, USA, Vol. 1, pp. 5.B.3–5.1.
  23. Hejase, M., Oguz, A., Kurt, A., Ozguner, U. and Redmill, K. (2016). A hierarchical hybrid state system based controller design approach for an autonomous UAS mission, 16th AIAA Aviation Technology, Integration, and Operations Conference, Washington, USA, DOI: 10.2514/6.2016-3294.10.2514/6.2016-3294
  24. Kearns, S.K., Mavin, T.J. and Hodge, S. (2020). Engaging the Next Generation of Aviation Professionals, Routledge, London.10.4324/9780429287732
  25. Khan, T., Johnston, K. and Ophoff, J. (2019). The impact of an augmented reality application on learning motivation of students, Advances in Human–Computer Interaction 2019: 1–14, Article ID: 7208494.10.1155/2019/7208494
  26. Ledermann, F. and Schmalstieg, D. (2005). April: A high-level framework for creating augmented reality presentations, IEEE Virtual Reality, Bonn, Germany, pp. 187–194, DOI: 10.1109/VR.2005.1492773.10.1109/VR.2005.1492773
  27. Lee, K. (2012). Augmented reality in education and training, TechTrends 56(2): 13–22, DOI: 10.1007/s11528-012-0559-3.10.1007/s11528-012-0559-3
  28. Markets and Markets (2019). Augmented and virtual reality (AR VR) market in aviation global forecast to 2025 by technology (AR, VR), function (training, operations), component (hardware, software), application (on-board, off-board), product, vertical, and region, Market Research Report AS 4553, Markets and Markets, https://www.marketsandmarkets.com/pdfdownloadNew.asp?id=230427667.
  29. Moir, I. and Seabridge, A. (2008). Aircraft Systems: Mechanical, Electrical, and Avionics Subsystems Integration, 3rd Edn, Wiley, Chichester, DOI: 10.1002/9780470770931.10.1002/9780470770931
  30. Myers, P.L., Starr, A.W. and Mullins, K. (2018). Flight simulator fidelity, training transfer, and the role of instructors in optimizing learning, International Journal of Aviation, Aeronautics, and Aero-Space 5(1), Article 6.10.15394/ijaaa.2018.1203
  31. Neumann, U. and Majoros, A. (1998). Cognitive, performance, and systems issues for augmented reality applications in manufacturing and maintenance, IEEE 1998 Virtual Reality Annual International Symposium, Atlanta, USA, pp. 4–11, DOI: 10.1109/VRAIS.1998.658416.10.1109/VRAIS.1998.658416
  32. Olsson, M. (2016). Behavior Trees for Decision-Making in Autonomous Driving, Master thesis, KTH Royal Institute of Technology, Stockholm.
  33. Page, R.L. (2004). Brief history of flight simulation, Semantic Scholar, Corpus ID: 211478463, DOI: 10.1.1.132.5428.
  34. Parkinson, S.R., Hill, M.D., Sisson, N. and Viera, C. (1988). Effects of breadth, depth and number of responses on computer menu search performance, International Journal of Man-Machine Studies 28(6): 683–692.10.1016/S0020-7373(88)80068-3
  35. Parsons, D. (2020). Full flight simulators incorporate VR for next generation of pilots, Aviation Today, https://www.aviationtoday.com/2019/08/01/training-brain-mind/.
  36. Plummer, D., Karamouzis, F., Alvarez, G., Hill, J., Sallam, R., Daigler, J., Hunter, R., Litan, A., Resnick, M., Prentice, B., Natis, Y. and Gaughan, D. (2019). Gartner’s Top Strategic Predictions for 2020 and Beyond: Technology Changes the Human Condition, Gartner, Inc., Stamford, https://emtemp.gcom.cloud/ngw/globalassets/en/doc/documents/450595-top-strategic-predictions-for-2020-and-beyond.pdf.
  37. Rabbath, C. (2013). A finite-state machine for collaborative airlift with a formation of unmanned air vehicles, Journal of Intelligent & Robotic Systems 70: 233–253.10.1007/s10846-012-9692-7
  38. Rypulak, A. (2017). Using a virtual reality environment to teach practical skills of aviation personnel, EduAkcja, https://eduakcja.eu/files/pdf/143.pdf, (in Polish).
  39. Safi, M., Chung, J. and Pradhan, P. (2019). Review of augmented reality in aerospace industry, Aircraft Engineering and Aerospace Technology 91(9): 1187–1194, DOI: 10.1108/AEAT-09-2018-0241.10.1108/AEAT-09-2018-0241
  40. Schaffernak, H., Moesl, B., Vorraber, W. and Koglbauer, I.V. (2020). Potential augmented reality application areas for pilot education: An exploratory study, Education Sciences 10(4): 86, DOI: 10.3390/educsci10040086.10.3390/educsci10040086
  41. Singh, V. and Singh, A. (2018). Learn-as-you-go: Feedback-driven result ranking and query refinement for interactive data exploration, Procedia Computer Science 125: 550–559.10.1016/j.procs.2017.12.071
  42. Sklyarov, V., da Rocha, A.A. and de Ferrari, A.B. (1998). Synthesis of Reconfigurable Control Devices Based on Object-Oriented Specifications, Springer, Boston, DOI: 10.1007/978-1-4757-4419-4_7.10.1007/978-1-4757-4419-4_7
  43. Spagnolo, C., Sumsurooah, S., Hill, C. and Bozhko, S. (2018). Finite state machine control for aircraft electrical distribution system, Journal of Engineering 2018(13): 506–511, DOI: 10.1049/joe.2018.0039.10.1049/joe.2018.0039
  44. Stańczyk, U., Cyran, K. and Pochopień, B. (2007). Theory of Logic Circuits. Vol. 2: Circuit Design and Analysis, Silesian University of Technology, Gliwice, (in Polish).
  45. Turner, R., Hooda, S., Gersh, J. and Cancro, G. (2008). ExecSpec: Visually designing and operating a finite state machine-based spacecraft autonomy system Proceedings of the 9th International Symposium on Artificial Intelligence, Robotics and Automation for Space, Pasadena, USA, DOI: 10.1.1.520.1445.
  46. Valenta, V. (2018). Effects of airline industry growth on pilot training, Magazine of Aviation Development 6(4): 52–56.10.14311/MAD.2018.04.06
  47. Velichko, M. (2020). How virtual and augmented reality are used in aviation training and other use cases, Jasoren, https://jasoren.com/how-virtual-and-augmented-reality-are-used-in-aviation-training-and-other-use-cases.
  48. Wang, D., Yang, S., Wang, L. and Liu, W. (2016). Hardware-in-the-loop simulation for aircraft electric power system, 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles/International Transportation Electrification Conference (ESARS-ITEC), Toulouse, France, pp. 1–5.
  49. Yon, Z. (2015). Modeling and simulation of controllers of aircraft power supply system based on finite state machine, Semantic Scholar: Engineering, Corpus ID: 114484490.
  50. Young, J.D. (2015). Development of a Finite State Machine for a Small Unmanned Aircraft System Using Experimental Design, Student graduate works, AFIT-ENS-MS-15-M-146, Wright-Patterson Air Force Base, Dayton, https://scholar.afit.edu/etd/136.
  51. Zajac, W., Andrzejewski, G., Krzywicki, K. and Królikowski, T. (2019). Finite state machine based modelling of discrete control algorithm in lad diagram language with use of new generation engineering software, Procedia Computer Science 159(2019): 2560–2569.10.1016/j.procs.2019.09.431
  52. Zaphiris, P. (2000). Depth vs. breath in the arrangement of web links, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, San Diego, USA, pp. 453–456.
  53. Zazula, A., Myszor, D., Antemijczuk, O. and Cyran, K. (2013). Flight simulators—From electromechanical analogue computers to modern laboratory of flying, Advances in Science and Technology Research Journal 7(17): 51–55, DOI: 10.5604/20804075.1036998.10.5604/20804075.1036998
  54. Zhang, J., Sheng, Y., Hao, W., Wang, P.P., Tian, P., Miao, K. and Pickering, C.K. (2010). A context-aware framework supporting complex ubiquitous scenarios with augmented reality enabled, 5th International Conference on Pervasive Computing and Applications, Maribor, Slovenia, pp. 69–74, DOI: 10.1109/ICPCA.2010.5704077.10.1109/ICPCA.2010.5704077
  55. Zhu, J., Ong, S. and Nee, A. (2015). A context-aware augmented reality assisted maintenance system, International Journal of Computer Integrated Manufacturing 28(2): 213–225, DOI: 10.1080/0951192X.2013.874589.10.1080/0951192X.2013.874589
DOI: https://doi.org/10.34768/amcs-2021-0049 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 713 - 727
Submitted on: Dec 14, 2020
Accepted on: Aug 10, 2021
Published on: Dec 30, 2021
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2021 Małgorzata Bach, Aleksandra Werner, Magda Mrozik, Krzysztof A. Cyran, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.