Chen, J., Zhu, H., Zhang, L. and Sun, Y. (2018). Research on fuzzy control of path tracking for underwater vehicle based on genetic algorithm optimization, Ocean Engineering156: 217–223.10.1016/j.oceaneng.2018.03.010
Cheng, C., Zhu, D., Bing, S., Chu, Z. and Sheng, Z. (2015). Path planning for autonomous underwater vehicle based on artificial potential field and velocity synthesis, 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering, Halifax, Canada, pp. 717–721.
Cohen, L.D. and Kimmel, R. (1997). Global minimum for active contour models: A minimal path approach, International Journal of Computer Vision24(1): 57–78.10.1109/CVPR.1996.517144
Crane, K.,Weischedel, C. andWardetzky, M. (2013). Geodesics in heat: A new approach to computing distance based on heat flow, ACM Transactions on Graphics32(5): 152.10.1145/2516971.2516977
Hedjar, R. and Bounkhel, M. (2019). An automatic collision avoidance algorithm for multiple marine surface vehicles, International Journal of Applied Mathematics and Computer Science29(4): 759–768, DOI: 10.2478/amcs-2019-0056.10.2478/amcs-2019-0056
Klaučo, M., Blažek, S. and Kvasnica, M. (2016). An optimal path planning problem for heterogeneous multi-vehicle systems, International Journal of Applied Mathematics and Computer Science26(2): 297–308, DOI: 10.1515/amcs-2016-0021.10.1515/amcs-2016-0021
Koay, T.-B. and Chitre, M. (2013). Energy-efficient path planning for fully propelled AUVs in congested coastal waters, OCEANS 2013 MTS/IEEE Bergen: The Challenges of the Northern Dimension, Bergen, Norway, pp. 1–9.
Lolla, T., Ueckermann, M., Yi, K., Haley Jr., K. and Lermusiaux, P. (2012). Path planning in time dependent flow fields using level set methods, IEEE International Conference on Robotics and Automation, Saint Paul, USA, pp. 166–173.
MahmoudZadeh, S., Yazdani, A., Sammut, K. and Powers, D. (2017). Online path planning for AUV rendezvous in dynamic cluttered undersea environment using evolutionary algorithms, Applied Soft Computing70(9): 929–945.10.1016/j.asoc.2017.10.025
Makdah, A.A.R.A., Daher, N., Asmar, D. and Shammas, E. (2019). Three-dimensional trajectory tracking of a hybrid autonomous underwater vehicle in the presence of underwater current, Ocean Engineering185: 115–132.10.1016/j.oceaneng.2019.05.030
Niu, H., Ji, Z., Savvaris, A. and Tsourdos, A. (2020). Energy efficient path planning for unmanned surface vehicle in spatially-temporally variant environment, Ocean Engineering196: 106766.10.1016/j.oceaneng.2019.106766
Niu, H., Lu, Y., Savvaris, A. and Tsourdos, A. (2018). An energy-efficient path planning algorithm for unmanned surface vehicles, Ocean Engineering161: 308–321.10.1016/j.oceaneng.2018.01.025
Pêtrès, C., Pailhas, Y., Patrón, P., Petillot, Y. and David, L. (2007). Path planning for autonomous underwater vehicles, IEEE Transactions on Robotics23(2): 331–341.10.1109/TRO.2007.895057
Peyré, G., Péchaud, M., Keriven, R. and Cohen, L. (2010). Geodesic methods in computer vision and graphics, Foundations and Trends in Computer Graphics and Vision5(3–4): 197–397.10.1561/0600000029
Singh, Y., Sharma, S., Sutton, R., Hatton, D. and Khan, A. (2018). A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents, Ocean Engineering169: 187–201.10.1016/j.oceaneng.2018.09.016
Song, R., Liu, W., Liu, Y. and Bucknall, R. (2015). A two-layered fast marching path planning algorithm for an unmanned surface vehicle operating in a dynamic environment, OCEANS 2015, Genova, Italy, pp. 1–8.
Song, R., Liu, Y. and Bucknall, R. (2017). A multi-layered fast marching method for unmanned surface vehicle path planning in a time-variant maritime environment, Ocean Engineering129: 301–317.10.1016/j.oceaneng.2016.11.009
Soulignac, M., Taillibert, P. and Rueher, M. (2008). Adapting the wavefront expansion in presence of strong currents, IEEE International Conference on Robotics and Automation, Pasadena, USA, pp. 1352–1358.
Witt, J. and Dunbabin, M. (2008). Go with the flow: Optimal AUV path planning in coastal environments, Proceedings of the 2008 Australasian Conference on Robotics and Automation, Sydney, Australia, pp. 1–9.
Wu, Y. (2019). Coordinated path planning for an unmanned aerial-aquatic vehicle (UAAV) and an autonomous underwater vehicle (AUV) in an underwater target strike mission, Ocean Engineering182: 162–173.10.1016/j.oceaneng.2019.04.062
Yang, F., Chai, L., Chen, D. and Cohen, L. (2018). Geodesic via asymmetric heat diffusion based on Finsler metric, Asian Conference on Computer Vision, Perth, Australia, pp. 371–386.
Yang, F. and Cohen, L.D. (2016). Geodesic distance and curves through isotropic and anisotropic heat equations on images and surfaces, Journal of Mathematical Imaging and Vision55(2): 210–228.10.1007/s10851-015-0621-9
Zeng, Z., Lian, L., Sammut, K., He, F., Tang, Y. and Lammas, A. (2015). A survey on path planning for persistent autonomy of autonomous underwater vehicles, Ocean Engineering110: 303–313.10.1016/j.oceaneng.2015.10.007