Have a personal or library account? Click to login
Fault identification in underwater vehicle thrusters via sliding mode observers Cover

Fault identification in underwater vehicle thrusters via sliding mode observers

Open Access
|Dec 2020

References

  1. Alwi, H. and Edwards, C. (2008). Fault tolerant control using sliding modes with on-line control allocation, Automatica44(7): 1859–1866, DOI: 10.1016/j.automatica.2007.10.034.10.1016/j.automatica.2007.10.034
  2. Bartoszewicz, A. and Adamiak, K. (2019). A reference trajectory based discrete time sliding mode control strategy, International Journal of Applied Mathematics and Computer Science29(3): 517–525, DOI: 10.1515/amcs-2019-0038.
  3. Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M. (2006). Diagnosis and Fault-Tolerant Control, Springer, Berlin.
  4. Byrski, W., Drapała, M. and Byrski, J. (2019). An adaptive identification method based on the modulating functions technique and exact state observers for modeling and simulation of a nonlinear MISO glass melting process, International Journal of Applied Mathematics and Computer Science29(4): 739–757, DOI: 10.2478/amcs-2019-0055.10.2478/amcs-2019-0055
  5. Chirikjian, G. (2009). Robotic self-replication, self-diagnosis, and self-repair: Probabilistic considerations, in H. Asama et al. (Eds), Distributed Autonomous Robotic Systems 8, Springer, Berlin/Heiderberg, pp. 273–281, DOI: 10.1007/978-3-642-00644-9_24.10.1007/978-3-642-00644-9_24
  6. Daidola, J. and Johnson, F. (1992). Propeller Selection and Optimization Program, Manual for the Society of Naval Architects and Marine, New York, NY.
  7. Davila, J., Fridman, L. and Poznyak, A. (2006). Observation and identification of mechanical systems via second order sliding modes, International Journal of Control79(10): 1251–1262, DOI: 10.1080/00207170600801635.10.1080/00207170600801635
  8. Edwards, C., Alwi, H. and Tan, C.P. (2012). Sliding mode methods for fault detection and fault tolerant control with application to aerospace systems, International Journal of Applied Mathematics and Computer Science22(1): 109–124, DOI: 10.2478/v10006-012-0008-7.10.2478/v10006-012-0008-7
  9. Edwards, C. and Spurgeon, S. (1994). On the development of discontinuous observers, International Journal of Control59(5): 1211–1229, DOI: 10.1080/00207179408923128.10.1080/00207179408923128
  10. Edwards, C., Spurgeon, S. and Patton, R. (2000). Sliding mode observers for fault detection and isolation, Automatica36(4): 541–553, DOI: 10.1016/S0005-1098(99)00177-6.10.1016/S0005-1098(99)00177-6
  11. Escobet, T., Bregon, A., Pulido, B. and Puig, V. (2019). Fault Diagnosis of Dynamic Systems, Springer, Berlin.10.1007/978-3-030-17728-7
  12. Filaretov, V., Zhirabok, A., Zuev, A. and Protcenko, A. (2012). The development of the faults accommodation system for actuators of multilink manipulators, Proceedings of the 23rd DAAAM International Symposium on Intelligent Manufacturing and Automation, Vienna, Austria, pp. 575–578.
  13. Fridman, L., Levant, A. and Davila, J. (2007). Observation of linear systems with unknown inputs via high-order sliding modes, International Journal of Systems Science38(10): 773–791, DOI: 10.1080/00207720701409538.10.1080/00207720701409538
  14. Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker, New York, NY.
  15. He, J. and Zhang, C. (2012). Fault reconstruction based on sliding mode observer for nonlinear systems, Mathematical Problems in Engineering2012(2): 1–22, DOI: 10.1155/2012/451843.10.1155/2012/451843
  16. Inzarcev, A., Kiselev, L. and Kostenko, V. (2018). Underwater Robotics: Systems, Technologies, Application, IMTP FEB RAS, Vladivostok, (in Russian).
  17. Kalsi, K., Hui, S. and Zak, S. (2011). Unknown input and sensor fault estimation using sliding-mode observers, Proceedings of the American Control Conference, San Francisco, CA, USA, pp. 1364–1369.
  18. Mironovsky, L. (1998). Functional Diagnosis of Dynamic Systems, Nauka, Moscow, (in Russian).
  19. Pisarets, A., Zhirabok, A. and Inzartsev, A. (2004). On diagnosis for thrusters of underwater vehicles, Proceedings of the Sixth ISOPE Pacific/Asia Offshore Mechanics Symposium, Vladivostok, Russia, pp. 255–259.
  20. Rascón, R., Rosas, D. and Hernandez-Balbuena, D. (2017). Regulation control of an underactuated mechanical system with discontinuous friction and backlash, International Journal of Applied Mathematics and Computer Science27(4): 785–797, DOI: 10.1515/amcs-2017-0055.10.1515/amcs-2017-0055
  21. Sarkar, N., Podder, T. and Antonelli, G. (2002). Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation, IEEE Transactions on Robotics and Automation18(2): 223–233, DOI: 10.1109/TRA.2002.999650.10.1109/TRA.2002.999650
  22. Simani, S., Fantuzzi, C. and Patton, R. (2002). Model-based Fault Diagnosis in Dynamic Systems Using Identification, Springer, Berlin.10.1007/978-1-4471-3829-7
  23. Tan, C. and Edwards, C. (2003). Sliding mode observers for robust detection and reconstruction of actuator and sensor faults, International Journal of Robust and Nonlinear Control, 13(5): 443–463, DOI: 10.1002/rnc.723.10.1002/rnc.723
  24. Utkin, V. (1992). Sliding Modes in Control Optimization, Springer, Berlin.10.1007/978-3-642-84379-2
  25. Wang, J. (2012a). Fault diagnosis of underwater vehicle with FNN, Proceedings of the 10th World Congress on Intelligent Control and Automation, Beijing, China, pp. 2931–2934, DOI: 10.1109/WCICA.2012.6358371.10.1109/WCICA.2012.6358371
  26. Wang, J. (2012b). Fault diagnosis of underwater vehicle with neural network, Proceedings of the 24th Chinese Control and Decision Conference (CCDC), Taiyuan, China, pp. 1613–1617, DOI: 10.1109/CCDC.2012.6243012.10.1109/CCDC.2012.6243012
  27. Wang, J., Wu, G., Wan, L., Sun, Y. and Jiang, D. (2009). Recurrent neural network applied to fault diagnosis of underwater robots, Proceedings of the IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, pp. 593–598, DOI: 10.1109/ICICISYS.2009.5357773.10.1109/ICICISYS.2009.5357773
  28. Zhang, M., Wu, J. and Wang, Y. (2011). Simultaneous faults detection and location of thrusters and sensors for autonomous underwater vehicle, Proceedings of the 4th International Conference on Intelligent Computation Technology and Automation, Shenzhen, China, pp. 504–507. DOI: 10.1109/ICICTA.2011.139.10.1109/ICICTA.2011.139
  29. Zhao, B., Skjetne, R., Blanke, M. and Dukan, F. (2014). Particle filter for fault diagnosis and robust navigation of underwater robot, IEEE Transactions on Control Systems Technology22(6): 2399–2407, DOI: 10.1109/TCST.2014.2300815.10.1109/TCST.2014.2300815
  30. Zhirabok, A., Shumsky, A., Solyanik, S. and Suvorov, A. (2017). Fault detection in nonlinear systems via linear methods, International Journal of Applied Mathematics and Computer Science27(2): 261–272, DOI: 10.1515/amcs-2017-0019.10.1515/amcs-2017-0019
  31. Zhirabok, A., Zuev, A. and Shumsky, A. (2019). Diagnosis of linear systems based on sliding mode observers, Journal of Computer and Systems Sciences International58(6): 898–914, DOI: 10.1134/S1064230719040166.10.1134/S1064230719040166
  32. Zhirabok, A., Zuev, A. and Shumsky, A. (2020a). Diagnosis of linear dynamic systems: An approach based on sliding mode observers, Automation and Remote Control81(2): 345–358, DOI: 10.1134/S0005117920020022.10.1134/S0005117920020022
  33. Zhirabok, A., Zuev, A. and Shumsky, A. (2020b). Identification of faults in the sensors of technical systems with the use of sliding mode observers, Measurement Techniques62(10): 869–878, DOI: 10.1007/s11018-020-01707-1.10.1007/s11018-020-01707-1
  34. Zhu, D. and Sun, B. (2013). Information fusion fault diagnosis method for unmanned underwater vehicle thrusters, IET Electrical Systems in Transportation3(4): 102–111, DOI: 10.1049/iet-est.2012.0052.10.1049/iet-est.2012.0052
DOI: https://doi.org/10.34768/amcs-2020-0050 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 679 - 688
Submitted on: Mar 27, 2020
|
Accepted on: Jul 13, 2020
|
Published on: Dec 31, 2020
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Alexander Zuev, Alexey Zhirabok, Vladimir Filaretov, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.