Have a personal or library account? Click to login
Ant–Based Clustering for Flow Graph Mining Cover

References

  1. Bazan, J.G., Buregwa-Czuma, S. and Jankowski, A.W. (2013). A domain knowledge as a tool for improving classifiers, Fundamenta Informaticae127(1–4): 495–511.10.3233/FI-2013-923
  2. Deneubourg, J., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C. and Chrétien, L. (1991). The dynamics of collective sorting: Robot-like ants and ant-like robots, Proceedings of the 1st International Conference on Simulation of Adaptive Behaviour: From Animals to Animats 1, Paris, France, pp. 356–365.
  3. Dong, G. and Pei, J. (2007). Sequence Data Mining, Springer-Verlag, New York, NY.
  4. Duch, W., Kucharski, T., Gomuła, J. and Adamczak, R. (1999). Machine Learning Methods in Analysis of Psychometric Data: Application to Multiphasic Personality Inventory MMPI-WISKAD,CMK, Toruń, (in Polish).
  5. Ellson, J., Gansner, E.R., Koutsofios, E., North, S.C. and Woodhull, G. (2004). Graphviz and Dynagraph—Static and dynamic graph drawing tools, in M. Jünger and P. Mutzel (Eds), Graph Drawing Software, Springer, Berlin/Heidelberg, pp. 127–148.10.1007/978-3-642-18638-7_6
  6. Ford, L.R. and Fulkerson, D. (2010). Flows in Networks, Princeton University Press, Princeton, NJ.
  7. Handl, J., Knowles, J. and Dorigo, M. (2006). Ant-based clustering and topographic mapping, Artificial Life12(1): 35–62.10.1162/10645460677518640016393450
  8. Huang, K.-Y. and Chang, C.-H. (2008). Efficient mining of frequent episodes from complex sequences, Information Systems33(1): 96–114.10.1016/j.is.2007.07.003
  9. Klement, E.P., Mesiar, R. and Pap, E. (2000). Triangular Norms, Springer, Dordrecht.10.1007/978-94-015-9540-7
  10. Kumar, P., Kumar, P., Krishna, P.R. and Raju, S.B. (2011). Pattern Discovery Using Sequence Data Mining: Applications and Studies, IGI Global, Hershey, PA.10.4018/978-1-61350-056-9
  11. Lumer, E. and Faieta, B. (1994). Diversity and adaptation in populations of clustering ants, Proceedings of the 3rd International Conference on Simulation of Adaptive Behaviour: From Animals to Animats 3, Brighton, UK, pp. 501–508.
  12. Mannila, H., Toivonen, H. and Verkamo, A. (1997). Discovering frequent episodes in event sequences, Data Mining and Knowledge Discovery1(3): 259–289.10.1023/A:1009748302351
  13. Marwala, T. (2013). Introduction to Economic Modeling, Springer, London.10.1007/978-1-4471-5010-7_1
  14. Mieszkowicz-Rolka, A. and Rolka, L. (2006). Flow graphs and decision tables with fuzzy attributes, in L. Rutkowski et al. (Eds), Artificial Intelligence and Soft Computing (ICAISC 2006), Springer, Berlin/Heidelberg, pp. 268–277.10.1007/11785231_29
  15. Mitsa, T. (2010). Temporal Data Mining, CRC Press, Boca Raton, FL.10.1201/9781420089776
  16. Nichols, D. (2011). Essentials of MMPI-2 Assessment, John Wiley, Hoboken, NJ.
  17. Pancerz, K. (2015). On selected functionality of the classification and prediction software system (CLAPSS), Proceedings of the International Conference on Information and Digital Technologies (IDT’2015), Zilina, Slovakia, pp. 278–285.
  18. Pancerz, K. (2016). Paradigmatic and syntagmatic relations in information systems over ontological graphs, Fundamenta Informaticae148(1–2): 229–242.10.3233/FI-2016-1432
  19. Pancerz, K., Lewicki, A. and Tadeusiewicz, R. (2015). Ant-based extraction of rules in simple decision systems over ontological graphs, International Journal of Applied Mathematics and Computer Science25(2): 377–387, DOI: 10.1515/amcs-2015-0029.10.1515/amcs-2015-0029
  20. Pancerz, K., Lewicki, A., Tadeusiewicz, R. and Warchoł, J. (2013). Ant-based clustering in delta episode information systems based on temporal rough set flow graphs, Fundamenta Informaticae128(1–2): 143–158.10.3233/FI-2013-938
  21. Pancerz, K., Paja, W., Sarzyński, J. and Gomuła, J. (2018). Determining importance of ranges of MMPI scales using fuzzification and relevant attribute selection, Procedia Computer Science126: 2065–2074.10.1016/j.procs.2018.07.245
  22. Pancerz, K., Paja, W., Wrzesień, M. and Warchoł, J. (2012). Classification of voice signals through mining unique episodes in temporal information systems: A rough set approach, Proceedings of the 21st International Workshop on Concurrency, Specification and Programming (CS&P 2012), Vilamoura, Algarve, Portugal, pp. 280–291.
  23. Parpinelli, R.S., Lopes, H.S. and Freitas, A.A. (2002). An ant colony algorithm for classification rule discovery, in H.A. Abbass et al. (Eds), Data Mining: A Heuristic Approach, IGI Global, Hershey, PA, pp. 191–208.10.4018/978-1-930708-25-9.ch010
  24. Pawlak, Z. (1991). Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Dordrecht.10.1007/978-94-011-3534-4
  25. Pawlak, Z. (2005). Flow graphs and data mining, in J. Peters and A. Skowron (Eds), Transactions on Rough Sets III, Springer-Verlag, Berlin/Heidelberg, pp. 1–36.10.1007/11427834_1
  26. Tadeusiewicz, R. (2015). Neural networks as a tool for modeling of biological systems, Bio-Algorithms and Med-Systems11(3): 135–144.10.1515/bams-2015-0021
DOI: https://doi.org/10.34768/amcs-2020-0041 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 561 - 572
Submitted on: Nov 21, 2019
Accepted on: Jun 8, 2020
Published on: Sep 29, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Arkadiusz Lewicki, Krzysztof Pancerz, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.