Have a personal or library account? Click to login
T–S Fuzzy Bibo Stabilisation of Non–Linear Systems Under Persistent Perturbations Using Fuzzy Lyapunov Functions and Non–PDC Control Laws Cover

T–S Fuzzy Bibo Stabilisation of Non–Linear Systems Under Persistent Perturbations Using Fuzzy Lyapunov Functions and Non–PDC Control Laws

Open Access
|Sep 2020

References

  1. Abedor, J., Nagpal, K. and Poolla, K. (1996). Linear matrix inequality approach to peak-to-peak gain minimization, International Journal of Robust and Nonlinear Control6(9–10): 899–927.10.1002/(SICI)1099-1239(199611)6:9/10<;899::AID-RNC259>3.0.CO;2-G
  2. Boyd, S., El Ghaoui, L., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA.10.1137/1.9781611970777
  3. Cherifi, A. (2017). Contribution à la commande des modèles Takagi–Sugeno: Approche non-quadratique et synthèse D-stable, PhD thesis, Ecole Doctorale Sciences, Technologies, Santé (Reims,Marne).
  4. Delmotte, F., Guerra, T.-M. and Ksantini, M. (2007). Continuous Takagi–Sugeno’s models: Reduction of the number of LMI conditions in various fuzzy control design technics, IEEE Transactions on Fuzzy Systems15(3): 426–438.10.1109/TFUZZ.2006.889829
  5. Gahinet, P., Nemirovski, A., Laub, A.J. and Chilali, M. (1995). LMI Control Toolbox, Technical report, The Mathworks Inc., Natick, MA.
  6. Guedes, J.A., Teixeira, M.C.M., Cardim, R. and Assunção, E. (2013). Stability of nonlinear system using Takagi–Sugeno fuzzy models and hyper-rectangle of LMIs, Journal of Control, Automation and Electrical Systems24(1-2): 46–53.10.1007/s40313-013-0015-4
  7. Guerra, T.M., Bernal, M., Guelton, K. and Labiod, S. (2012). Non-quadratic local stabilization for continuous-time Takagi–Sugeno models, Fuzzy Sets and Systems201: 40–54.10.1016/j.fss.2011.12.003
  8. Guerra, T.M., Kruszewski, A., Vermeiren, L. and Tirmant, H. (2006). Conditions of output stabilization for nonlinear models in the Takagi–Sugeno’s form, Fuzzy Sets and Systems157(9): 1248–1259.10.1016/j.fss.2005.12.006
  9. Guerra, T.M., Sala, A. and Tanaka, K. (2015). Fuzzy control turns 50: 10 Years later, Fuzzy Sets and Systems281: 168–182.10.1016/j.fss.2015.05.005
  10. Guerra, T.M. and Vermeiren, L. (2004). LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi–Sugeno’s form, Automatica40(5): 823–829.10.1016/j.automatica.2003.12.014
  11. Hauser, J., Sastry, S. and Kokotovic, P. (1992). Nonlinear control via approximate input-output linearization: The ball and beam example, IEEE Transactions on Automatic Control37(3): 392–398.10.1109/9.119645
  12. Hu, G., Liu, X., Wang, L. and Li, H. (2017). Relaxed stability and stabilisation conditions for continuous-time Takagi–Sugeno fuzzy systems using multiple-parameterised approach, IET Control Theory & Applications11(6): 774–780.10.1049/iet-cta.2016.1017
  13. Hu, G., Liu, X., Wang, L. and Li, H. (2018). An extended approach to controller design of continuous-time Takagi–Sugeno fuzzy model, Journal of Intelligent & Fuzzy Systems34(4): 2235–2246.10.3233/JIFS-171266
  14. Hu, G., Liu, X., Wang, L. and Li, H. (2019). Further study on local analysis of continuous-time T–S fuzzy models with bounded disturbances, IET Control Theory Applications13(3): 403–410.10.1049/iet-cta.2018.5070
  15. Lam, H. (2018). A review on stability analysis of continuous-time fuzzy-model-based control systems: From membership-function-independent to membership-function-dependent analysis, Engineering Applications of Artificial Intelligence67: 390–408.10.1016/j.engappai.2017.09.007
  16. Lam, H. K., Xiao, B., Yu, Y., Yin, X., Han, H., Tsai, S.-H. and Chen, C.-S. (2016). Membership-function-dependent stability analysis and control synthesis of guaranteed cost fuzzy-model-based control systems, International Journal of Fuzzy Systems18(4): 537.10.1007/s40815-016-0162-4
  17. Lee, D.H., Joo, Y.H. and Tak, M.H. (2014). Local H control and invariant set analysis for continuous-time T–S fuzzy systems with magnitude- and energy-bounded disturbances, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, pp. 1990–1997.
  18. Lee, D.H. and Kim, D.W. (2014). Relaxed LMI conditions for local stability and local stabilization of continuous-time Takagi–Sugeno fuzzy systems, IEEE Transactions on Cybernetics44(3): 394–405.10.1109/TCYB.2013.225678123757558
  19. Lee, D.H., Park, J.B. and Joo, Y.H. (2012). A fuzzy Lyapunov function approach to estimating the domain of attraction for continuous-time Takagi–Sugeno fuzzy systems, Information Sciences185(1): 230–248.10.1016/j.ins.2011.06.008
  20. Liu, X. and Zhang, Q. (2003). Approaches to quadratic stability conditions and H control designs for T–S fuzzy systems, IEEE Transactions on Fuzzy Systems11(6): 830–838.10.1109/TFUZZ.2003.819834
  21. Löfberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB, Proceedings of the CACSD Conference, Taipei, Taiwan, pp. 284–289.
  22. Márquez, R., Guerra, T.M., Bernal, M. and Kruszewski, A. (2016). A non-quadratic Lyapunov functional for H control of nonlinear systems via Takagi–Sugeno models, Journal of the Franklin Institute353(4): 781–796.10.1016/j.jfranklin.2016.01.004
  23. Márquez, R., Guerra, T.M., Bernal, M. and Kruszewski, A. (2017). Asymptotically necessary and sufficient conditions for Takagi–Sugeno models using generalized non-quadratic parameter-dependent controller design, Fuzzy Sets and Systems306: 48–62.10.1016/j.fss.2015.12.012
  24. Mozelli, L.A. (2011). Novas Funçôes de Lyapunov Fuzzy e Soluçôes Numéricas para Análise de Estabilidade e Controle de Sistemas via Modelagem Takagi–Sugeno: Aproximando os Controles Fuzzy e Não-linear, PhD thesis, Universidade Federal de Minas Gerais, Belo Horizonte.
  25. Mozelli, L.A., Palhares, R.M. and Avellar, G.S. (2009). A systematic approach to improve multiple Lyapunov function stability and stabilization conditions for fuzzy systems, Information Sciences179(8): 1149–1162.10.1016/j.ins.2008.12.002
  26. Pan, J.-T., Guerra, T.M., Fei, S.-M. and Jaadari, A. (2012). Nonquadratic stabilization of continuous T–S fuzzy models: LMI solution for a local approach, IEEE Transactions on Fuzzy Systems20(3): 594–602.10.1109/TFUZZ.2011.2179660
  27. Qiu, J., Sun, K., Rudas, I. and Gao, H. (2019a). Command filter-based adaptive NN control for MIMO nonlinear systems with full-state constraints and actuator hysteresis, IEEE Transactions on Cybernetics50(7): 2905–2915.10.1109/TCYB.2019.294476131647452
  28. Qiu, J., Sun, K., Wang, T. and Gao, H. (2019b). Observer-based fuzzy adaptive event-triggered control for pure-feedback nonlinear systems with prescribed performance, IEEE Transactions on Fuzzy Systems27(11): 2152–2162.10.1109/TFUZZ.2019.2895560
  29. da Silva Campos, V.C., Nguyen, A.-T. and Palhares, R.M. (2017). A comparison of different upper-bound inequalities for the membership functions derivative, IFACPapersOnLine50(1): 3001–3006.10.1016/j.ifacol.2017.08.667
  30. Sala, A. and Ariño, C. (2007). Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya’s theorem, Fuzzy Sets and Systems158(24): 2671–2686.10.1016/j.fss.2007.06.016
  31. Salcedo, J. and Martinez, M. (2008). BIBO stabilisation of Takagi–Sugeno fuzzy systems under persistent perturbations using fuzzy output-feedback controllers, IET Control Theory & Applications2(6): 513–523.10.1049/iet-cta:20070191
  32. Salcedo, J.V., Martínez, M. and García-Nieto, S. (2008). Stabilization conditions of fuzzy systems under persistent perturbations and their application in nonlinear systems, Engineering Applications of Artificial Intelligence21(8): 1264–1276.10.1016/j.engappai.2008.04.012
  33. Salcedo, J.V., Martínez, M., García-Nieto, S. and Hilario, A. (2018). BIBO stabilisation of continuous-time Takagi–Sugeno systems under persistent perturbations and input saturation, International Journal of Applied Mathematics and Computer Science28(3): 457–472, DOI: 10.2478/amcs-2018-0035.10.2478/amcs-2018-0035
  34. Sanchez Peña, R.S. and Sznaier, M. (1998). Robust Systems, Theory and Applications, John Wiley and Sons, New York, NY.
  35. Scherer, C. and Weiland, S. (2000). Linear matrix inequalities in control, Technical Report 2, University of Stuttgart, Stuttgart.
  36. Sun, K., Mou, S., Qiu, J., Wang, T. and Gao, H. (2019). Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full state constraints, IEEE Transactions on Fuzzy Systems27(8): 1587–1601.10.1109/TFUZZ.2018.2883374
  37. Tanaka, K., Hori, T. and Wang, H.O. (2001). A fuzzy Lyapunov approach to fuzzy control system design, Proceedings of the 2001 American Control Conference, Arlington, VA, USA, Vol. 6, pp. 4790–4795.
  38. Tanaka, K., Ikeda, T. and Wang, H. (1998). Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI-based designs, IEEE Transactions on Fuzzy Systems6(2): 250–265.10.1109/91.669023
  39. Tanaka, K. and Wang, H.O. (2001). Fuzzy Control Systems. Design and Analysis. A Linear Matrix Inequality Approach, John Wiley & Sons, New York, NY.
  40. Teixeira, M.C.M., Assunçao, E. and Avellar, R.G. (2003). On relaxed LMI-based designs for fuzzy regulators and fuzzy observers, IEEE Transactions on Fuzzy Systems11(5): 613–623.10.1109/TFUZZ.2003.817840
  41. Tuan, H., Apkarian, P., Narikiyo, T. and Yamamoto, Y. (2001). Parameterized linear matrix inequality techniques in fuzzy control system design, IEEE Transactions on Fuzzy Systems9(2): 324–332.10.1109/91.919253
  42. Vafamand, N. (2020a). Global non-quadratic Lyapunov-based stabilization of T–S fuzzy systems: A descriptor approach, Journal of Vibration and Control, DOI: 10.1177/1077546320904817.10.1177/1077546320904817
  43. Vafamand, N. (2020b). Transient performance improvement of Takagi–Sugeno fuzzy systems by modified non-parallel distributed compensation controller, Asian Journal of Control, DOI: 10.1002/asjc.2340.10.1002/asjc.2340
  44. Vafamand, N., Asemani, M.H. and Khayatian, A. (2017a). Robust L1 observer-based non-PDC controller design for persistent bounded disturbed T–S fuzzy systems, IEEE Transactions on Fuzzy SystemsPP(99): 1.
  45. Vafamand, N., Asemani, M.H. and Khayatian, A. (2017b). TS fuzzy robust L1 control for nonlinear systems with persistent bounded disturbances, Journal of the Franklin Institute354(14): 5854–5876.10.1016/j.jfranklin.2017.07.025
  46. Vafamand, N., Asemani, M.H. and Khayatiyan, A. (2016). A robust L1 controller design for continuous-time TS systems with persistent bounded disturbance and actuator saturation, Engineering Applications of Artificial Intelligence56: 212–221.10.1016/j.engappai.2016.09.002
  47. Vafamand, N. and Shasadeghi, M. (2017). More relaxed non-quadratic stabilization conditions using T–S open loop system and control law properties, Asian Journal of Control19(2): 467–481.10.1002/asjc.1429
  48. Wang, L., Peng, J., Liu, X. and Zhang, H. (2015). Further study on local stabilization of continuous-time nonlinear systems presented as Takagi–Sugeno fuzzy model, Journal of Intelligent & Fuzzy Systems29(1): 283–292.10.3233/IFS-151594
  49. Yoneyama, J. (2017). New conditions for stability and stabilizaion of Takagi–Sugeno fuzzy systems, 11th Asian Control Conference (ASCC), Gold Coast, Australia, pp. 2154–2159.
DOI: https://doi.org/10.34768/amcs-2020-0039 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 529 - 550
Submitted on: Jan 1, 2020
Accepted on: May 25, 2020
Published on: Sep 29, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 José V. Salcedo, Miguel Martínez, Sergio García-Nieto, Adolfo Hilario, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.