Have a personal or library account? Click to login
Solution of an inverse kinematics problem using dual quaternions Cover
Open Access
|Jul 2020

References

  1. An, H.S., Lee, J.H., Lee, C., Seo, T. and Lee, J.W. (2017). Geometrical kinematic solution of serial spatial manipulators using screw theory, Mechanism and Machine Theory116: 404–418.10.1016/j.mechmachtheory.2017.06.002
  2. An, H.S., Seo, T.W. and Lee, J.W. (2018). Generalized solution for a sub-problem of inverse kinematics based on product of exponential formula, Journal of Mechanical Science and Technology32(5): 2299–2307.10.1007/s12206-018-0441-0
  3. Cariow, A., Cariowa, G. and Witczak, M. (2015). An FPGA-oriented fully parallel algorithm for multiplying dual quaternions, Measurement Automation Monitoring61(7): 370–372.
  4. Chang, C., Liu, J., Ni, Z. and Qi, R. (2018). An improved kinematic calibration method for serial manipulators based on POE formula, Robotica36(8): 1244–1262.10.1017/S0263574718000280
  5. Chen, Q., Zhu, S. and Zhang, X. (2015). Improved inverse kinematics algorithm using screw theory for a six-DOF robot manipulator, International Journal of Advanced Robotic Systems12(10): 1–9.10.5772/60834
  6. Clifford, W.K. (1882). Mathematical Papers, Macmillan and Company, London.
  7. Craig, J.J. (2009). Introduction to Robotics: Mechanics and Control, 3/E, Pearson Education India, Delhi.
  8. Ge, W., Chen, L., Wang, X., Xing, E. and Zielinska, T. (2019). Kinematics modeling and analysis of manipulator using the dual quaternion, 2019 IEEE International Conference on Mechatronics and Automation (ICMA), Tianjin, China, pp. 750–755, DOI: 10.1109/ICMA.2019.8816603.10.1109/ICMA.2019.8816603
  9. Ge, W., Yu, X. and Xing, E. (2018). Kinematics modeling and analysis of manipulator based on dual quaternion, Journal of Mechanical Transmission42(07): 112–117, DOI :10.16578/j.issn.1004.2539.2018.07.023.
  10. Gouasmi, M., Ouali, M. and Brahim, F. (2012). Robot kinematics using dual quaternions, IAES International Journal of Robotics and Automation1(1): 13–30.10.11591/ijra.v1i1.275
  11. Gui, H. and Vukovich, G. (2016). Dual-quaternion-based adaptive motion tracking of spacecraft with reduced control effort, Nonlinear Dynamics83(1–2): 597–614.10.1007/s11071-015-2350-4
  12. Kenwrigth, B. (2013). Inverse kinematics with dual-quaternions, exponential-maps, and joint limits, International Journal on Advances in Intelligent Systems6(1): 53–65.
  13. Kussaba, H.T.M., Figueredo, L.F.C., Ishihara, J.Y. and Adorno, B.V. (2017). Hybrid kinematic control for rigid body pose stabilization using dual quaternions, Journal of the Franklin Institute: Engineering and Applied Mathematics354(7): 2769–2787.10.1016/j.jfranklin.2017.01.028
  14. Mueller, A. (2017). Coordinate mappings for rigid body motions, Journal of Computational and Nonlinear Dynamics12(2): 1–13.10.1115/1.4034730
  15. Mukundan, R. (2002). Quaternions: From classical mechanics to computer graphics, and beyond, Proceedings of the 7th Asian Technology Conference on Mathematics, Melaka, Malaysia, pp. 97–105.
  16. Murray, R.M. (1994). A Mathematical Introduction to Robotic Manipulation, CRC Press, Inc. Boca Raton, FL.
  17. Oezguer, E. and Mezouar, Y. (2016). Kinematic modeling and control of a robot arm using unit dual quaternions, Robotics and Autonomous Systems77: 66–73.10.1016/j.robot.2015.12.005
  18. Sariyildiz, E., Cakiray, E. and Temeltas, H. (2011). A comparative study of three inverse kinematic methods of serial industrial robot manipulators in the screw theory framework, International Journal of Advanced Robotic Systems8(5): 9–24.10.5772/45696
  19. Sariyildiz, E. and Temeltas, H. (2012). A new formulation method for solving kinematic problems of multiarm robot systems using quaternion algebra in the screw theory framework, Turkish Journal of Electrical Engineering & Computer Sciences20(4): 607–628.10.3906/elk-1011-971
  20. Singh, A., Singla, E., Soni, S. and Singla, A. (2018). Kinematic modeling of a 7-degree of freedom spatial hybrid manipulator for medical surgery, Proceedings of the Institution of Mechanical Engineers H: Journal of Engineering in Medicine232(1): 12–23.10.1177/095441191774133129139331
  21. Tan, Q. and Balchen, J.G. (1993). General quaternion transformation representation for robotic application, Proceedings of the IEEE Systems Man and Cybernetics Conference, Le Touquet, France, Vol. 3, pp. 319–324.
  22. Vidaković, J.Z., Lazarević, M.P., Kvrgić, V.M., Dančuo, Z.Z. and Ferenc, G.Z. (2014). Advanced quaternion forward kinematics algorithm including overview of different methods for robot kinematics, FME Transactions42(3): 189–198.10.5937/fmet1403189v
  23. Wang, H., Lu, X., Sheng, C., Zhang, Z., Cui, W. and Li, Y. (2018). General frame for arbitrary 3R subproblems based on the POE model, Robotics and Autonomous Systems105: 138–145.10.1016/j.robot.2018.04.002
  24. Wang, J.-Y., Liang, H.-Z., Sun, Z.-W., Wu, S.-N. and Zhang, S.-J. (2013). Relative motion coupled control based on dual quaternion, Aerospace Science and Technology25(1): 102–113.10.1016/j.ast.2011.12.013
  25. Wang, X., Yu, C. and Lin, Z. (2012). A dual quaternion solution to attitude and position control for rigid-body coordination, IEEE Transactions on Robotics28(5): 1162–1170.10.1109/TRO.2012.2196310
  26. Xiong, G., Ding, Y., Zhu, L. and Su, C.-Y. (2017). A product-of-exponential-based robot calibration method with optimal measurement configurations, International Journal of Advanced Robotic Systems14(6): 1–11.10.1177/1729881417743555
  27. Yue-sheng, T. and Ai-Ping, X. (2008). Extension of the second Paden–Kahan sub-problem and its application in the inverse kinematics of a manipulator, IEEE Conference on Robotics, Automation and Mechatronics, Chengdu, China, pp. 379-381, DOI:10.1109/RAMECH.2008.4681401.10.1109/RAMECH.2008.4681401
  28. Zhao, R., Shi, Z., Guan, Y., Shao, Z., Zhang, Q. and Wang, G. (2018). Inverse kinematic solution of 6R robot manipulators based on screw theory and the paden-kahan subproblem, International Journal of Advanced Robotic Systems15(6): 1–11.10.1177/1729881418818297
  29. Zhu, C. and Zhao, Z. (2019). Research on influence of joint clearance on precision of 3-TPT parallel robot, Mechanical Sciences10(1): 287–298.10.5194/ms-10-287-2019
DOI: https://doi.org/10.34768/amcs-2020-0027 | Journal eISSN: 2083-8492 | Journal ISSN: 1641-876X
Language: English
Page range: 351 - 361
Submitted on: Aug 22, 2019
Accepted on: Mar 26, 2020
Published on: Jul 4, 2020
Published by: University of Zielona Góra
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Lei Chen, Teresa Zielinska, Jikun Wang, Weimin Ge, published by University of Zielona Góra
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.