Have a personal or library account? Click to login

References

  1. Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016 Jan 30;387(10017):475–90. Available from: https://pubmed.ncbi.nlm.nih.gov/26869575/
  2. Verhasselt V. Breastfeeding, a personalized medicine with influence on short- and long-term immune health. Nestle Nutr Inst Workshop Ser. 2020;94:48–58. Available from: https://pubmed.ncbi.nlm.nih.gov/32222711/
  3. Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: A review on its composition and bioactivity. Early Hum Dev. 2015 Nov 1;91(11):629–35. Available from: https://pubmed.ncbi.nlm.nih.gov/26375355/
  4. Simon Sarkadi L, Zhang M, Muránszky G, Vass RA, Matsyura O, Benes E, et al. Fatty Acid Composition of milk from mothers with normal weight, obesity, or gestational diabetes. Life (Basel). 2022 Jul 21;12(7):1093. Available from: https://pubmed.ncbi.nlm.nih.gov/35888181/
  5. Peila C, Bertino E, Cresi F, Coscia A. Interactions between pre-eclampsia and composition of the human milk: what do we know? J Matern Fetal Neonatal Med. 2022 Dec;35(25):6219–6225. Available from: https://pubmed.ncbi.nlm.nih.gov/34121581/
  6. Peila C, Gazzolo D, Bertino E, Cresi F, Coscia A. Influence of Diabetes during Pregnancy on Human Milk Composition. Nutrients. 2020 Jan 9;12(1):185 Available from: https://pubmed.ncbi.nlm.nih.gov/31936574/
  7. Witkowska-Zimny M, Kaminska-El-Hassan E. Cells of human breast milk. Cell Mol Biol Lett. 2017 Jul 13 [cited 2022 Aug 7];22(1). Available from: https://pubmed.ncbi.nlm.nih.gov/28717367/
  8. Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. Proteomics: Technologies and Their Applications. J Chromatogr Sci. 2017 Feb 1 [cited 2022 Aug 4];55(2):182–96. Available from: https://pubmed.ncbi.nlm.nih.gov/28087761/
  9. Noto A, Fanos V, Dessì A. Metabolomics in Newborns. Adv Clin Chem. 2016;74:35–61. Available from: https://pubmed.ncbi.nlm.nih.gov/27117660/
  10. Fanos V, Van den Anker J, Noto A, Mussap M, Atzori L. Metabolomics in neonatology: fact or fiction? Semin Fetal Neonatal Med. 2013 Feb;18(1):3–12. Available from: https://pubmed.ncbi.nlm.nih.gov/23195852/
  11. PRISMA 2020 — PRISMA statement. [cited 2024 Aug 16]. Available from: https://www.prisma-statement.org/prisma-2020
  12. Mariano DCB, Leite C, Santos LHS, Rocha REO, de Melo-Minardi RC. A guide to performing systematic literature reviews in bioinformatics. arXiv [preprint]. 2017;170705813.
  13. Wang M, Zhao Z, Zhao A, Zhang J, Wu W, Ren Z, et al. Neutral Human Milk Oligosaccharides Are Associated with Multiple Fixed and Modifiable Maternal and Infant Characteristics. Nutrients. 2020;12(3):826. Available from: https://pubmed.ncbi.nlm.nih.gov/32244912/
  14. Tonon MK, M B de M, Abrão FVAC, Miranda A, Morais BT. Maternal and Infant Factors Associated with Human Milk Oligosaccharides Concentrations According to Secretor and Lewis Phenotypes. Nutrients. 2019;11(6):1358. Available from: https://pubmed.ncbi.nlm.nih.gov/31212920/
  15. Ma L, McJarrow P, Mohamed H, Liu XH, Welman A, Fong BY. Lactational changes in the human milk oligosaccharide concentration in Chinese and Malaysian mothers’ milk. Int Dairy J. 2018;87:1–10.
  16. Ferreira AL, Alves R, Figueiredo A, Alves-Santos N, Freitas-Costa N, Batalha M, et al. Human milk oligosaccharide profile variation throughout postpartum in healthy women in a Brazilian cohort. Nutrients. 2020;12(3). Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081991835&doi=10.3390%2fnu12030790&partnerID=40&md5=3061469af62bb61c35f8ccbc8990ce9a
  17. Dallas DC, Martin WF, Strum JS, Zivkovic AM, Smilowitz JT, Underwood MA, et al. N-linked glycan profiling of mature human milk by high-performance microfluidic chip liquid chromatography time-of-flight tandem mass spectrometry. J Agric Food Chem. 2011;59(8):4255–63. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79955016013&doi=10.1021%2fjf104681p&partnerID=40&md5=2194cce7525b769390181af799ce1d58
  18. Xu G, Davis JC, Goonatilleke E, Smilowitz JT, German JB, Lebrilla CB. Absolute quantitation of human milk oligosaccharides reveals phenotypic variations during lactation. J Nutr. 2017;147(1):117–24. Available from: https://pubmed.ncbi.nlm.nih.gov/27798342/
  19. Alexandre-Gouabau MC, Moyon T, David-Sochard A, Fenaille F, Cholet S, Royer AL, et al. Comprehensive preterm breast milk metabotype associated with optimal infant early growth pattern. Nutrients. 2019 Feb 28;11(3):528. Available from: https://pubmed.ncbi.nlm.nih.gov/30823457/
  20. Chaturvedi P, Warren CD, Altaye M, Morrow AL, Ruiz-Palacios G, Pickering LK, et al. Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology. 2001 May;11(5):365–72. Available from: https://pubmed.ncbi.nlm.nih.gov/11425797/
  21. Siziba LP, Mank M, Stahl B, Gonsalves J, Blijenberg B, Rothenbacher D, et al. Human milk oligosaccharide profiles over 12 months of lactation: the Ulm SPATZ health study. Nutrients. 2021 Jun 8;13(6):1973.Available from: https://pubmed.ncbi.nlm.nih.gov/34201331/
  22. Yan J, Ding J, Jin G, Duan Z, Yang F, Li D, et al. Profiling of human milk oligosaccharides for lewis epitopes and secretor status by electrostatic repulsion hydrophilic interaction chromatography coupled with negative-ion electrospray tandem mass spectrometry. Anal Chem. 2019;91(13):8199–206. Available from: https://pubmed.ncbi.nlm.nih.gov/31070893/
  23. Vinjamuri A, Davis JCC, Totten SM, Wu LD, Klein LD, Martin M, et al. Human Milk Oligosaccharide Compositions Illustrate Global Variations in Early Nutrition. J Nutr. 2022;152(5):1239–53. Available from: https://pubmed.ncbi.nlm.nih.gov/35179194/
  24. M. Nijman R, Liu Y, Bunyatratchata A, T. Smilowitz J, Stahl B, Barile D. Characterization and Quantification of Oligosaccharides in Human Milk and Infant Formula. J Agric Food Chem. 2018 May 25;66(26):6851–9.
  25. Niñonuevo MR, Perkins PD, Francis J, Lamotte LM, Locascio RG, Freeman SL, et al. Daily variations in oligosaccharides of human milk determined by microfluidic chips and mass spectrometry. J Agric Food Chem. 2008 Jan 23;56(2):618–26. Available from: https://pubmed.ncbi.nlm.nih.gov/18088092/
  26. McJarrow P, Radwan H, Ma L, MacGibbon AKH, Hashim M, Hasan H, et al. Human Milk oligosaccharide, phospholipid, and ganglioside concentrations in breast milk from United Arab Emirates mothers: results from the MISC cohort. Nutrients. 2019;11(10):2400. Available from: https://pubmed.ncbi.nlm.nih.gov/31597293/
  27. Picariello G, Ferranti P, Mamone G, Roepstorff P, Addeo F. Identification of N-linked glycoproteins in human milk by hydrophilic interaction liquid chromatography and mass spectrometry. Proteomics. 2008;8(18):3833–47. Available from: https://pubmed.ncbi.nlm.nih.gov/18780401/
  28. Zhang L, Ma Y, Yang Z, Jiang S, Liu J, Hettinga KA, et al. Geography and ethnicity related variation in the Chinese human milk serum proteome. Food Funct. 2019;10(12):7818–27. Available from: https://pubmed.ncbi.nlm.nih.gov/31696193/
  29. Patel V, Klootwijk E, Whiting G, Bockenhauer D, Siew K, Walsh S, et al. Quantification of FAM20A in human milk and identification of calcium metabolism proteins. Physiol Rep. 2021 Dec;9(24):e15150. Available from: https://pubmed.ncbi.nlm.nih.gov/34957696/
  30. Zhu J, Dingess KA. The Functional Power of the Human Milk Proteome. Nutrients. 2019 Aug 1;11(8). Available from: https://pubmed.ncbi.nlm.nih.gov/31398857/
  31. Fortunato D, Giuffrida MG, Cavaletto M, Garoffo LP, Dellavalle G, Napolitano L, et al. Structural proteome of human colostral fat globule membrane proteins. Proteomics. 2003 Jun;3(6):897–905. Available from: https://pubmed.ncbi.nlm.nih.gov/12833513/
  32. Mandal SM, Bharti R, Porto WF, Gauri SS, Mandal M, Franco OL, et al. Identification of multifunctional peptides from human milk. Peptides (NY). 2014;56:84–93. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84922270411&doi=10.1016%2fj.peptides.2014.03.017&partnerID=40&md5=7bff6e4a472cae1ab773740dccbf9dd3
  33. Liao Y, Alvarado R, Phinney B, Lönnerdal B. Proteomic characterization of human milk fat globule membrane proteins during a 12 month lactation period. J Proteome Res. 2011;10(8):3530–41. Available from: https://pubmed.ncbi.nlm.nih.gov/21714549/
  34. Hettinga KA, Reina FM, Boeren S, Zhang L, Koppelman GH, Postma DS, et al. Difference in the breast milk proteome between allergic and non-allergic mothers. PLoS One. 2015 Mar 23;10(3): e0122234. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4370490/
  35. Grapov D, Lemay DG, Weber D, Phinney BS, R ACI, Gho DS, et al. The human colostrum whey proteome is altered in gestational diabetes mellitus. J Proteome Res. 2015;14(1):512–20. Available from: https://pubmed.ncbi.nlm.nih.gov/25338220/
  36. Smilowitz JT, Totten SM, Huang J, Grapov D, Durham HA, Lammi-Keefe CJ, et al. Human milk secretory immunoglobulin a and lactoferrin N-glycans are altered in women with gestational diabetes mellitus. J Nutr. 2013;143(12):1906–12. Available from: https://pubmed.ncbi.nlm.nih.gov/24047700/
  37. Chen L, Wang J, Jiang P, Ren F, Lei X, Guo H. Alteration of the colostrum whey proteome in mothers with gestational hypothyroidism. PLoS One. 2018 Oct 17;13(10):e0205987. Available from: https://pubmed.ncbi.nlm.nih.gov/30332478/
  38. Guo J, Tan M, Zhu J, Tian Y, Liu H, Luo F, et al. Proteomic analysis of human milk reveals nutritional and immune benefits in the colostrum from mothers with COVID-19. Nutrients. 2022 Jun 17;14(12):2513. Available from: https://pubmed.ncbi.nlm.nih.gov/35745243/
  39. Di Francesco L, Di Girolamo F, Mennini M, Masotti A, Salvatori G, Rigon G, et al. A MALDI-TOF MS approach for mammalian, human, and formula milks’ profiling. Nutrients. 2018 Sep 5;10(9):1238. Available from: https://pubmed.ncbi.nlm.nih.gov/30189627/
  40. Wen L, Wu Y, Yang Y, Han TL, Wang W, Fu H, et al. Gestational diabetes mellitus changes the metabolomes of human colostrum, transition milk and mature milk. Med Sci Monit. 2019 Aug 16;25:6128–52. Available from: https://pubmed.ncbi.nlm.nih.gov/31418429/
  41. Liao Y, Alvarado R, Phinney B, Lönnerdal B. Proteomic characterization of human milk whey proteins during a twelve-month lactation period. J Proteome Res. 2011;10(4):1746–54. Available from: https://pubmed.ncbi.nlm.nih.gov/21361340/
  42. Li K, Jiang J, Xiao H, Wu K, Qi C, Sun J, et al. Changes in the metabolite profile of breast milk over lactation stages and their relationship with dietary intake in Chinese women: HPLC-QTOFMS based metabolomic analysis. Food Funct. 2018;9(10):5189–97. Available from: https://pubmed.ncbi.nlm.nih.gov/30259935/
  43. Marincola FC, Noto A, Caboni P, Reali A, Barberini L, Lussu M, et al. A metabolomic study of preterm human and formula milk by high resolution NMR and GC/MS analysis: preliminary results. J Matern Fetal Neonatal Med. 2012 Oct 2;25(sup5):62–7. Available from: https://dx.doi.org/10.3109/14767058.2012.715436
  44. Gaitán A V, Wood JT, Zhang F, Makriyannis A, Lammi-Keefe CJ. Endocannabinoid metabolome characterization of transitional and mature human milk. Nutrients. 2018 Sep 12;10(9):1294. Available from: https://pubmed.ncbi.nlm.nih.gov/30213124/
  45. Zhang W, Li K, Zheng C, Sun H, Pan J, Li Y, et al. Human milk metabolomics are related to maternal adiposity, infant growth rate and allergies: the Chinese human milk project. Nutrients. 2022 May 18;14(10):2097. Available from: https://pubmed.ncbi.nlm.nih.gov/35631238/
  46. Isganaitis E, Venditti S, Matthews TJ, Lerin C, Demerath EW, Fields DA. Maternal obesity and the human milk metabolome: associations with infant body composition and postnatal weight gain. Am J Clin Nutr. 2019;110(1):111–20. Available from: https://pubmed.ncbi.nlm.nih.gov/30968129/
  47. Yue Wu, Jiaxiao Yu Xiyao Liu, Wenling Wang, Zhi Chen, Juan Qiao, Xiaohui Liu, et al. Gestational diabetes mellitus-associated changes in the breast milk metabolome alters the neonatal growth trajectory. PubMed. 2021 Jul;40(6):4043–4054. Available from: https://pubmed.ncbi.nlm.nih.gov/33640207/
  48. Arias-Borrego A, Velasco I, Gómez-Ariza JL, García-Barrera T. Iodine deficiency disturbs the metabolic profile and elemental composition of human breast milk. Food Chem. 2022 Mar 1;371:131329. Available from: https://pubmed.ncbi.nlm.nih.gov/34808765/
  49. Li M, Chen J, Shen X, Abdlla R, Liu L, Yue X, et al. Metabolomics-based comparative study of breast colostrum and mature breast milk. Food Chem. 2022 Aug 1;384:132491. Available from: https://pubmed.ncbi.nlm.nih.gov/35189438/
  50. Villaseñor A, Garcia-Perez I, Garcia A, Posma JM, Fernández-López M, Nicholas AJ, et al. Breast milk metabolome characterization in a single-phase extraction, multiplatform analytical approach. Anal Chem. 2014 Aug 19;86(16):8245–52. Available from: https://pubmed.ncbi.nlm.nih.gov/25058331/
  51. Xu L, Chen W, Wang X, Yu Z, Han S. Comparative lipidomic analyses reveal different protections in preterm and term breast milk for infants. Front Pediatr. 2020;8:590. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85094939489&doi=10.3389%2ffped.2020.00590&partnerID=40&md5=a1289a116533c470080598f1418bef14
  52. George AD, Gay MCL, Wlodek ME, Trengove RD, Murray K, Geddes DT. Untargeted lipidomics using liquid chromatography-ion mobility-mass spectrometry reveals novel triacylglycerides in human milk. Sci Rep. 2020 Jun 9;10(1):9255. Available from: https://pubmed.ncbi.nlm.nih.gov/32518313/
  53. Koulman A, Furse S, Baumert M, Goldberg G, Bluck L. Rapid profiling of triglycerides in human breast milk using liquid extraction surface analysis Fourier transform mass spectrometry reveals new very long chain fatty acids and differences within individuals. Rapid Commun Mass Spectrom. 2019 Aug 15;33(15):1267–76. Available from: https://pubmed.ncbi.nlm.nih.gov/31009547/
  54. Hewelt-Belka W, Garwolińska D, Młynarczyk M, Kot-Wasik A. Comparative Lipidomic Study of Human Milk from Different Lactation Stages and Milk Formulas. Nutrients. 2020 Jul 21;12(7):2165. Available from: https://pubmed.ncbi.nlm.nih.gov/32708300/
  55. Song S, Liu TT, Liang X, Liu ZY, Yishake D, Lu XT, et al. Profiling of phospholipid molecular species in human breast milk of Chinese mothers and comprehensive analysis of phospholipidomic characteristics at different lactation stages. Food Chem. 2021 Jun 30:348:129091. Available from: https://pubmed.ncbi.nlm.nih.gov/33508603/
  56. Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: a review on its composition and bioactivity. Early Hum Dev. 2015 Nov;91(11):629–35.
  57. Gao X, Lu Y, Wei M, Yang M, Zheng C, Wang C, et al. Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Analysis of Human Milk Neutral and Sialylated Free Oligosaccharides Using Girard’s Reagent P On-Target Derivatization. J Agric Food Chem. 2019 Aug 14;67(32):8958–66. Available from: https://pubmed.ncbi.nlm.nih.gov/31334644/
  58. Newburg DS, Ruiz-Palacios GM, Altaye M, Chaturvedi P, Meinzen-Derr J, de Lourdes Guerrero M, et al. Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants. Glycobiology. 2004 Mar;14(3):253–63. Available from: https://pubmed.ncbi.nlm.nih.gov/14638628/
  59. Mantis NJ, Rol N, Corthésy B. Secretory IgA’s complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol. 2011 Nov 1;4(6):603–11. Available from: http://www.mucosalimmunology.org/article/S1933021922014271/fulltext
  60. Bhatt PR, Scaiola A, Loughran G, Leibundgut M, Kratzel A, Meurs R, et al. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science 2021 Jun 18;372(6548):1306–13. Available from: https://pubmed.ncbi.nlm.nih.gov/34029205/
  61. Jiang S, Pan J, Li Y, Ju M, Zhang W, Lu J, et al. Comprehensive Human Milk Patterns Are Related to Infant Growth and Allergy in the CHMP Study. Mol Nutr Food Res. 2021 Sep 1;65(17):e2100011. Available from: https://pubmed.ncbi.nlm.nih.gov/34227225/
  62. Denizli M, Capitano ML, Kua KL. Maternal obesity and the impact of associated early-life inflammation on long-term health of off-spring. Front Cell Infect Microbiol. 2022 Sep 16;12.
  63. Wu Y, Yu J, Liu X, Wang W, Chen Z, Qiao J, et al. Gestational diabetes mellitus-associated changes in the breast milk metabolome alters the neonatal growth trajectory. Clinical Nutrition. 2021;40(6):4043–54. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85101505851&doi=10.1016%2fj.clnu.2021.02.014&partnerID=40&md5=fdb85474429763cef638842ab820e815
  64. Cohen SS, Alexander DD, Krebs NF, Young BE, Cabana MD, Erdmann P, et al. Factors associated with breastfeeding initiation and continuation: a meta-analysis. J Pediatr. 2018 Dec 1;203:190–196.e21. Available from: https://pubmed.ncbi.nlm.nih.gov/30293638/
  65. Martínez-Vázquez S, Hernández-Martínez A, Rodríguez-Almagro J, Peinado-Molina RA, Martínez-Galiano JM. Determinants and factors associated with the maintenance of exclusive breastfeeding after hospital discharge after birth. Healthcare (Basel). 2022 Apr 14;10(4):733. Available from: http://www.ncbi.nlm.nih.gov/pubmed/35455909
  66. Zou XQ, Guo Z, Huang JH, Jin QZ, Cheong LZ, Wang XG, et al. Human milk fat globules from different stages of lactation: a lipid composition analysis and microstructure characterization. J Agric Food Chem. 2012 Jul 25;60(29):7158–67. Available from: https://pubmed.ncbi.nlm.nih.gov/22747344/
  67. Bernhard W, Poets CF, Franz AR. Choline and choline-related nutrients in regular and preterm infant growth. Eur J Nutr. 2019 Apr 1;58(3):931–45. Available from: https://pubmed.ncbi.nlm.nih.gov/30298207/
  68. Sordillo JE, Lutz SM, Kelly RS, McGeachie MJ, Dahlin A, Tantisira K, et al. Plasmalogens mediate the effect of age on bronchodilator response in individuals with asthma. Front Med (Lausanne). 2020 Feb 14;7:38. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC7034309/
  69. Agudelo CW, Kumley BK, Area-Gomez E, Xu Y, Dabo AJ, Geraghty P, et al. Decreased surfactant lipids correlate with lung function in chronic obstructive pulmonary disease (COPD). PLoS One. 2020 Feb 1;15(2): e0228279. Available from: https://pubmed.ncbi.nlm.nih.gov/32027677/
  70. Su X, Chen Y, Wang Y, Yang X, He Q. Disturbances of electron production, transport and utilization caused by chlorothalonil are responsible for the deterioration of soil denitrification. Soil Biol Biochem. 2019 Jul 1;134:100–7.
  71. Paul S, Lancaster GI, Meikle PJ. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog Lipid Res. 2019 Apr 1;74:186–95.
DOI: https://doi.org/10.34763/jmotherandchild.20252901.d-24-00044 | Journal eISSN: 2719-535X | Journal ISSN: 2719-6488
Language: English
Page range: 126 - 142
Submitted on: Nov 3, 2024
Accepted on: Jul 25, 2025
Published on: Sep 12, 2025
Published by: Institute of Mother and Child
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Julián Manuel Espitia Angel, Sergio Agudelo-Pérez, Laura Manuela Olarte Bermúdez, Daniela Del Pilar Chaparro Rojas, Sandy Daniela Bonilla Herrera, Mariana Gómez Merchán, published by Institute of Mother and Child
This work is licensed under the Creative Commons Attribution 4.0 License.