Have a personal or library account? Click to login
Maternal Serum Activin A, Inhibin A and Follistatin-Related Proteins across Preeclampsia: Insights into Their Role in Pathogenesis and Prediction Cover

Maternal Serum Activin A, Inhibin A and Follistatin-Related Proteins across Preeclampsia: Insights into Their Role in Pathogenesis and Prediction

Open Access
|Aug 2023

References

  1. Ghulmiyyah L, Sibai B. Maternal mortality from preeclampsia/eclampsia. Semin Perinatol. 2012;36(1):56–9. doi: 10.1053/j.semperi.2011.09.011
  2. Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: Pathophysiology, challenges, and perspectives. Circ Res. 2019;124(7):1094–112. doi: 10.1161/CIRCRESAHA.118.313276
  3. Garovic VD, Dechend R, Easterling T, Karumanchi SA, McMurtry Baird S, Magee LA, et al. Hypertension in pregnancy: diagnosis, blood pressure goals, and pharmacotherapy: a scientific statement from the American Heart Association. Hypertension. 2022;79(2): e21–e41. doi: 10.1161/HYP.0000000000000208
  4. Stepan H, Hund M, Andraczek T. Combining biomarkers to predict pregnancy complications and redefine preeclampsia: the angiogenic-placental syndrome. Hypertension. 2020;75(4):918–26. doi: 10.1161/HYPERTENSIONAHA.119.13763
  5. Capriglione S, Plotti F, Terranova C, Gulino FA, Di Guardo F, Lopez S, et al. Preeclampsia and the challenge of early prediction: reality or utopia? State of art and critical review of literature. J Matern Fetal Neonatal Med. 2020;33(4):677–86. doi: 10.1080/14767058.2018.1495191
  6. Myatt L. The prediction of preeclampsia: the way forward. Am J Obstet Gynecol. 2022;226(2):S1102–S1107.e8. doi: 10.1016/j.ajog.2020.10.047
  7. Acharya A, Brima W, Burugu S, Rege T. Prediction of preeclampsia-bench to bedside. Curr Hypertens Rep. 2014;16(11):491. doi: 10.1007/s11906-014-0491-3
  8. McCarthy FP, Ryan RM, Chappell LC. Prospective biomarkers in preterm preeclampsia: a review. Pregnancy Hypertens. 2018;14:72–8. doi: 10.1016/j.preghy.2018.03.010
  9. Giannakou K. Prediction of pre-eclampsia. Obstet Med. 2021;14(4):220–4. doi: 10.1177/1753495X20984015
  10. Roberge S, Bujold E, Nicolaides KH. Aspirin for the prevention of preterm and term preeclampsia: systematic review and meta-analysis. Am J Obstet Gynecol. 2018;218(3):287–293.e1. doi: 10.1016/j.ajog.2017.11.561
  11. Jung E, Romero R, Yeo L, Gomez-Lopez N, Chaemsaithong P, Jaovisidha A, et al. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226(2):S844–66. doi: 10.1016/j.ajog.2021.11.1356
  12. Aplin JD, Myers JE, Timms K, Westwood M. Tracking placental development in health and disease. Nat Rev Endocrinol. 2020;16(9):479–94. doi: 10.1038/s41574-020-0372-6
  13. Li Y, Yan J, Chang HM, Chen ZJ, Leung PCK. Roles of TGF-β superfamily proteins in extravillous trophoblast invasion. Trends Endocrinol Metab. 2021;32(3):170–89. doi: 10.1016/j.tem.2020.12.005
  14. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32. doi: 10.1080/1364557032000119616
  15. Yu L, Li D, Liao QP, Yang HX, Cao B, Fu G, et al. High levels of activin A detected in preeclamptic placenta induce trophoblast cell apoptosis by promoting nodal signaling. J Clin Endocrinol Metab. 2012;97(8):E1370–1379. doi: 10.1210/jc.2011-2729
  16. Baumann M, Bersinger N, Raio L, Albrecht C, Gerber S, Surbek D. Elevated activin A and soluble endoglin serum levels in first trimester harald pre-eclampsia. Am J Obstet Gynecol. 2013;208(1):S271. doi: 10.1016/j.ajog.2012.10.806
  17. Lai J, Pinas A, Syngelaki A, Poon LCY, Nicolaides KH. Maternal serum activin-A at 30–33 weeks in the prediction of pre-eclampsia. J Matern Fetal Neonatal Med. 2013;26(8):733–7. doi: 10.3109/14767058.2012.755167
  18. Tarca AL, Romero R, Benshalom-Tirosh N, Than NG, Gudicha DW, Done B, et al. The prediction of early preeclampsia: results from a longitudinal proteomics study. PloS One. 2019;14(6):e0217273. doi: 10.1371/journal.pone.0217273
  19. Hao S, You J, Chen L, Zhao H, Huang Y, Zheng L, et al. Changes in pregnancy-related serum biomarkers early in gestation are associated with later development of preeclampsia. PloS One. 2020;15(3):e0230000. doi: 10.1371/journal.pone.0230000
  20. Wong GP, Andres F, Walker SP, MacDonald TM, Cannon P, Nguyen TV, et al. Circulating activin A is elevated at 36 weeks’ gestation preceding a diagnosis of preeclampsia. Pregnancy Hypertens. 2022;27:23–6. doi: 10.1016/j.preghy.2021.11.006
  21. Olsen R, Woelkers D, Hull A, LaCoursiere Y. Abnormal second trimester serum analytes are more predictive of earlier and more severe variants of preeclampsia than mild preeclampsia. Am J Obstet Gynecol. 2012;206(1):S261. doi: 10.1016/j.ajog.2012.06.006
  22. Dugoff L, Cuckle H, Behrendt N, Cioffi-Ragan D, Myers L, Hobbins J. First-trimester prediction of preeclampsia using soluble P-selectin, follistatin-related protein 3, complement 3a, soluble TNF receptor type 1, PAPP-A, AFP, inhibin A, placental growth factor, uterine artery Doppler and maternal characteristics. Am J Obstet Gynecol. 2013;208(1):S252. doi: 10.1016/j.ajog.2012.10.755
  23. Boucoiran I, Thissier-Levy S, Wu Y, Wei SQ, Luo ZC, Delvin E, et al. Risks for preeclampsia and small for gestational age: predictive values of placental growth factor, soluble fms-like tyrosine kinase-1, and inhibin A in singleton and multiple-gestation pregnancies. Am J Perinatol. 2013;30(7):607–12. doi: 10.1055/s-0032-1329691
  24. Suri S, Muttukrishna S, Jauniaux E. 2D-ultrasound and endocrinologic evaluation of placentation in early pregnancy and its relationship to fetal birthweight in normal pregnancies and pre-eclampsia. Placenta. 2013;34(9):745–50. doi: 10.1016/j.placenta.2013.05.003
  25. Park HJ, Kim SH, Jung YW, Shim SS, Kim JY, Cho YK, et al. Screening models using multiple markers for early detection of late-onset preeclampsia in low-risk pregnancy. BMC Pregnancy Childbirth. 2014;14:35. doi: 10.1186/1471-2393-14-35
  26. Giguère Y, Massé J, Thériault S, Bujold E, Lafond J, Rousseau F, et al. Screening for pre-eclampsia early in pregnancy: performance of a multivariable model combining clinical characteristics and biochemical markers. BJOG. 2015;122(3):402–10. doi: 10.1111/1471-0528.13050
  27. Kumer K, Fabjan T, Vodušek VF, Sršen TP, Osredkar J. Assessment of maternal serum inhibin A in normal, preeclamptic and intrauterine growth restricted pregnancies. Clin Chem Lab Med. 2016;54(9):eA127–55. doi: 10.1515/cclm-2016-0624
  28. Chrelias G, Makris GM, Papanota AM, Spathis A, Salamalekis G, Sergentanis TN, et al. Serum inhibin and leptin: risk factors for pre-eclampsia? Clin Chim Acta. 2016;463:84–7. doi: 10.1016/j.cca.2016.10.013
  29. Broumand F, Lak SS, Nemati F, Mazidi A. A study of the diagnostic value of inhibin A tests for occurrence of preeclampsia in pregnant women. Electron Physician. 2018;10(1):6186–92. doi: 10.19082/6186
  30. Belovic DK, Plešinac S, Dotlić J, Radojević AS, Akšam S, Cvjetićanin MM, et al. Biochemical markers for prediction of hypertensive disorders of pregnancy. J Med Biochem. 2019;38(1): 71–82. doi: 10.2478/jomb-2018-0001
  31. Yue CY, Zhang CY, Ni YH, Ying CM. Are serum levels of inhibin A in second trimester predictors of adverse pregnancy outcome? PloS One. 2020;15(5):e0232634. doi: 10.1371/journal.pone.0232634
  32. Sharabi-Nov A, Kumar K, Fabjan Vodušek V, Premru Sršen T, Tul N, Fabjan T, et al. Establishing a differential marker profile for pregnancy complications near delivery. Fetal Diagn Ther. 2020;47(6):471–84. doi: 10.1159/000502177
  33. Kim YR, Jung I, Park G, Chang SW, Cho HY. First-trimester screening for early preeclampsia risk using maternal characteristics and estimated placental volume. J Matern Fetal Neonatal Med. 2021;34(7):1155–60. doi: 10.1080/14767058.2019.1628207
  34. Keikkala E, Forstén J, Ritvos O, Stenman UH, Kajantie E, Hämäläinen E, et al. Serum inhibin-A and PAPP-A2 in the prediction of pre-eclampsia during the first and second trimesters in high-risk women. Pregnancy Hypertens. 2021;25:116–22. doi: 10.1016/j.preghy.2021.05.024
  35. Garcés MF, Vallejo SA, Sanchez E, Palomino-Palomino MA, Leal LG, Ángel-Muller E, et al. Longitudinal analysis of maternal serum Follistatin concentration in normal pregnancy and preeclampsia. Clin Endocrinol (Oxf). 2015;83(2):229–35. doi: 10.1111/cen.12715
  36. Charkiewicz K, Jasinska E, Goscik J, Koc-Zorawska E, Zorawski M, Kuc P, et al. Angiogenic factor screening in women with mild preeclampsia – New and significant proteins in plasma. Cytokine. 2018;106:125–30. doi: 10.1016/j.cyto.2017.10.020
  37. Charkiewicz K. Maternal plasma angiogenic factor screening in women with preeclampsia. J Am Soc Hypertens. 2016;10(4): e40–1. doi: 10.1016/j.jash.2016.03.097
  38. Nevalainen J, Korpimaki T, Kouru H, Sairanen M, Ryynanen M. Performance of first trimester biochemical markers and mean arterial pressure in prediction of early-onset pre-eclampsia. Metabolism. 2017;75:6–15. doi: 10.1016/j.metabol.2017.07.004
  39. Luo Q, Han X. Second-trimester maternal serum markers in the prediction of preeclampsia. J Perinat Med. 2017;45(7):809–16. doi: 10.1515/jpm-2016-0249
  40. Han X, He J, Wang A, Dong M. Serum follistatin-like-3 was elevated in second trimester of pregnant women who subsequently developed preeclampsia. Hypertens Pregnancy. 2014;33(3):277–82. doi: 10.3109/10641955.2013.874439
  41. Purut YE, Buyukbayrak EE, Ercan F, Orcun A, Menke M, Karsidag AYK. Do first trimester maternal serum follistatin-like 3 levels predict preeclampsia and/or related adverse pregnancy outcomes? Clin Exp Obstet Gynecol. 2019;46(2):195–200. doi: 10.12891/ceog4423.2019
  42. Horvath R, Maski M, Zsengeller Z, Lo A, Pernicone E, Rigo J, et al. Follistatin-like 3 protein (FSTL3) is upregulated in preeclampsia. Pregnancy Hypertens. 2016;6(3):144. doi: 10.1016/j.preghy.2016.08.016
  43. Li L, Zheng Y, Zhu Y, Li J. Serum biomarkers combined with uterine artery Doppler in prediction of preeclampsia. Exp Ther Med. 2016;12(4):2515–20. doi: 10.3892/etm.2016.3625
  44. Xu YT, Shen MH, Jin AY, Li H, Zhu R. Maternal circulating levels of transforming growth factor-β superfamily and its soluble receptors in hypertensive disorders of pregnancy. Int J Gynaecol Obstet. 2017;137(3):246–52. doi: 10.1002/ijgo.12142
  45. Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019;76(18):3479–96. doi: 10.1007/s00018-019-03104-6
  46. Muttukrishna S. Role of inhibin in normal and high-risk pregnancy. Semin Reprod Med. 2004;22(3):227–34. doi: 10.1055/s-2004-831898
  47. Birdsall M, Ledger W, Groome N, Abdalla H, Muttukrishna S. Inhibin A and activin A in the first trimester of human pregnancy. J Clin Endocrinol Metab. 1997;82(5):1557–60. doi: 10.1210/jcem.82.5.3934
  48. Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in mammalian physiology. Physiol Rev. 2019;99(1): 739–80. doi: 10.1152/physrev.00002.2018
  49. O’Connor AE. Serum activin A and follistatin concentrations during human pregnancy: a cross-sectional and longitudinal study. Hum Reprod. 1999;14(3):827–32. doi: 10.1093/humrep/14.3.827
  50. Welt CK. The physiology and pathophysiology of inhibin, activin and follistatin in female reproduction. Curr Opin Obstet Gynecol. 2002;14(3):317–23. doi: 10.1097/00001703-200206000-00012
  51. Parfenova OK, Kukes VG, Grishin DV. Follistatin-like proteins: structure, functions and biomedical importance. Biomedicines. 2021;9(8):999. doi: 10.3390/biomedicines9080999
  52. Yokoyama Y, Nakamura T, Nakamura R, Irahara M, Aono T, Sugino H. Identification of activins and follistatin proteins in human follicular fluid and placenta. J Clin Endocrinol Metab. 1995;80(3):915–21. doi: 10.1210/jcem.80.3.7883850
  53. Fullerton PT, Monsivais D, Kommagani R, Matzuk MM. Follistatin is critical for mouse uterine receptivity and decidualization. Proc Natl Acad Sci. 2017;114(24). doi: 10.1073/pnas.1620903114
  54. Köninger A, Schmidt B, Damaske D, Birdir C, Enekwe A, Kimmig R, et al. Follistatin during pregnancy and its potential role as an ovarian suppressing agent. Eur J Obstet Gynecol Reprod Biol. 2017;212:150–4. doi: 10.1016/j.ejogrb.2017.03.001
  55. Santibañez JF, Quintanilla M, Bernabeu C. TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 1979. 2011;121(6):233–51. doi: 10.1042/CS20110086
  56. Moustakas A, Heldin CH. The regulation of TGFbeta signal transduction. Development. 2009;136(22):3699–714. doi: 10.1242/dev.030338
  57. Schneider-Kolsky ME, Manuelpillai U, Waldron K, Dole A, Wallace EM. The distribution of activin and activin receptors in gestational tissues across human pregnancy and during labour. Placenta. 2002;23(4):294–302. doi: 10.1053/plac.2002.0787
  58. Stoikos CJ, Harrison CA, Salamonsen LA, Dimitriadis E. A distinct cohort of the TGFβ superfamily members expressed in human endometrium regulate decidualization. Hum Reprod. 2008;23(6):1447–56. doi: 10.1093/humrep/den110
  59. Li Y, Klausen C, Zhu H, Leung PCK. Activin A increases human trophoblast invasion by inducing SNAIL-mediated MMP2 up-regulation through ALK4. J Clin Endocrinol Metab. 2015;100(11):E1415–27. doi: 10.1210/jc.2015-2134
  60. Silver HM, Lambert-Messerlian GM, Reis FM, Diblasio AM, Petraglia F, Canick JA. Mechanism of increased maternal serum total activin A and inhibin A in preeclampsia. J Soc Gynecol Investig. 2002;9(5):308–12. doi: 10.1016/s1071-5576(02)00165-x
  61. Li Y, Klausen C, Cheng JC, Zhu H, Leung PCK. Activin A, B, and AB increase human trophoblast cell invasion by up-regulating N-Cadherin. J Clin Endocrinol Metab. 2014;99(11):E2216–25. doi: 10.1210/jc.2014-2118
  62. Zhu S, Li Z, Cui L, Ban Y, Leung PCK, Li Y, et al. Activin A increases human trophoblast invasion by upregulating integrin β1 through ALK4. FASEB J. 2021;35(2). doi: 10.1096/fj.202001604R
  63. Kokkinos MI, Murthi P, Wafai R, Thompson EW, Newgreen DF. Cadherins in the human placenta – epithelial–mesenchymal transition (EMT) and placental development. Placenta. 2010;31(9):747–55. doi: 10.1016/j.placenta.2010.06.017
  64. Chen J, Khalil RA. Matrix metalloproteinases in normal pregnancy and preeclampsia. Prog Mol Biol Transl Sci. 2017;148: 87–165. doi: 10.1016/bs.pmbts.2017.04.001
  65. Shu C, Han S, Hu C, Chen C, Qu B, He J, et al. Integrin β1 regulates proliferation, apoptosis, and migration of trophoblasts through activation of phosphoinositide 3 kinase/protein kinase B signaling. J Obstet Gynaecol Res. 2021;47(7):2406–16. doi: 10.1111/jog.14782
  66. Brkić J, Dunk C, Shan Y, O’Brien JA, Lye P, Qayyum S, et al. Differential role of Smad2 and Smad3 in the acquisition of an endovascular trophoblast-like phenotype and preeclampsia. Front Endocrinol (Lausanne). 2020;11:436. doi: 10.3389/fendo.2020.00436
  67. Lim R, Acharya R, Delpachitra P, Hobson S, Sobey CG, Drummond GR, et al. Activin and NADPH-oxidase in preeclampsia: insights from in vitro and murine studies. Am J Obstet Gynecol. 2015;212(1):86.e1–12. doi: 10.1016/j.ajog.2014.07.021
  68. Hobson SR, Lim R, Mockler JC, Gurusinghe S, Wallace EM. Role of activin A in the pathogenesis of endothelial cell dysfunction in preeclampsia. In: Murthi P, Vaillancourt C, editors. Preeclampsia. New York, NY: Springer, 2018: 39–52. ISBN: 978-1-4939-7498-6
  69. Shahul S, Ramadan H, Nizamuddin J, Mueller A, Patel V, Dreixler J, et al. Activin A and late postpartum cardiac dysfunction among women with hypertensive disorders of pregnancy hypertension. 2018;72(1):188–93. doi: 10.1161/HYPERTENSIONAHA.118.10888
  70. Naseem H, Dreixler J, Mueller A, Tung A, Dhir R, Chibber R, et al. Antepartum aspirin administration reduces activin A and cardiac global longitudinal strain in preeclamptic women. J Am Heart Assoc. 2020;9(12):e015997. doi: 10.1161/JAHA.119.015997
  71. Jones RL. Inhibin and activin subunits are differentially expressed in endometrial cells and leukocytes during the menstrual cycle, in early pregnancy and in women using progestin-only contraception. Mol Hum Reprod. 2000;6(12):1107–17. doi: 10.1093/molehr/6.12.1107
  72. Minami S, Yamoto M, Nakano R. Immunohistochemical localization of inhibin/activin subunits in human placenta. Obstet Gynecol. 1992;80(3 Pt 1):410–4.
  73. Bearfield C, Jauniaux E, Groome N, Sargent IL, Muttukrishna S. The secretion and effect of inhibin A, activin A and follistatin on first-trimester trophoblasts in vitro. Eur J Endocrinol. 2005;152(6):909–16. doi: 10.1530/eje.1.01928
  74. Lambert-Messerlian GM, Pinar H, Laprade E, Tantravahi U, Schneyer A, Canick JA. Inhibins and activins in human fetal abnormalities. Mol Cell Endocrinol. 2004;225(1–2):101–8. doi: 10.1016/j.mce.2004.02.019
  75. Taché V, Baer RJ, Currier RJ, Li CS, Towner D, Waetjen LE, et al. Population-based biomarker screening and the development of severe preeclampsia in California. Am J Obstet Gynecol. 2014;211(4):377.e1–377.e8. doi: 10.1016/j.ajog.2014.03.026
  76. Kar M. Role of Biomarkers in early detection of preeclampsia. J Clin Diagn Res. 2014; 8(4): BE01–BE04. doi: 10.7860/JCDR/2014/7969.4261
  77. Fitzgerald B, Levytska K, Kingdom J, Walker M, Baczyk D, Keating S. Villous trophoblast abnormalities in extremely pre-term deliveries with elevated second trimester maternal serum hCG or inhibin-A. Placenta. 2011;32(4):339–45. doi: 10.1016/j.placenta.2011.01.018
  78. Depoix CL, de Selliers I, Hubinont C, Debieve F. HIF1A and EPAS1 potentiate hypoxia-induced upregulation of inhibin alpha chain expression in human term cytotrophoblasts in vitro. Mol Hum Reprod. 2017;23(3):199–209. doi: 10.1093/molehr/gax002
  79. Alldred SK, Takwoingi Y, Guo B, Pennant M, Deeks JJ, Neilson JP, et al. First and second trimester serum tests with and without first trimester ultrasound tests for Down's syndrome screening. Cochrane Database Syst Rev. 2017;3:CD012599. doi: 10.1002/14651858.CD012599
  80. Rolnik DL, Nicolaides KH, Poon LC. Prevention of preeclampsia with aspirin. Am J Obstet Gynecol. 2022;226(2S):S1108–19. doi: 10.1016/j.ajog.2020.08.045
  81. Florio P, Luisi S, Ciarmela P, Severi FM, Bocchi C, Petraglia F. Inhibins and activins in pregnancy. Mol Cell Endocrinol. 2004;225(1):93–100. doi: 10.1016/j.mce.2004.02.018
  82. Hobson SR, Wallace EM, Chan YF, Edwards AG, Teoh MWT, Khaw APL. Mirroring preeclampsia: the molecular basis of Ballantyne syndrome. J Matern Fetal Neonatal Med. 2020;33(5): 768–73. doi: 10.1080/14767058.2018.1500550
  83. Xie J, Xu Y, Wan L, Wang P, Wang M, Dong M. Involvement of follistatin-like 3 in preeclampsia. Biochem Biophys Res Commun. 2018;506(3):692–7. doi: 10.1016/j.bbrc.2018.10.139
  84. Xu Y, Xie J, Wan L, Wang M, Xu Y, Wang H, et al. Follistatin-like 3, an activin A binding protein, is involved in early pregnancy loss. Biomed Pharmacother. 2020;121:109577. doi: 10.1016/j.biopha.2019.109577
  85. Schneyer A, Sidis Y, Xia Y, Saito S, Re E del, Lin HY, et al. Differential actions of follistatin and follistatin-like 3. Mol Cell Endocrinol. 2004;225(1):25–8. doi: 10.1016/j.mce.2004.02.009
  86. Xie J, Zhu H, Chang HM, Klausen C, Dong M, Leung PCK. GDF8 promotes the cell invasiveness in human trophoblasts by upregulating the expression of follistatin-like 3 through the ALK5-SMAD2/3 signaling pathway. Front Cell Dev Biol. 2020;8:573781. doi: 10.3389/fcell.2020.573781
  87. Matsuzaki K. Smad phosphoisoform signaling specificity: the right place at the right time. Carcinogenesis. 2011;32(11): 1578–88. doi: 10.1093/carcin/bgr172
  88. Adu-Gyamfi EA, Tanam-Djankpa F, Nelson W, Czika A, Kumar-Sah S, Lamptey J, et al. Activin and inhibin signaling: from regulation of physiology to involvement in the pathology of the female reproductive system. Cytokine. 2020;133:155105. doi: 10.1016/j.cyto.2020.155105
DOI: https://doi.org/10.34763/jmotherandchild.20232701.d-23-00002 | Journal eISSN: 2719-535X | Journal ISSN: 2719-6488
Language: English
Page range: 119 - 133
Submitted on: Dec 10, 2022
Accepted on: Jun 11, 2023
Published on: Aug 19, 2023
Published by: Institute of Mother and Child
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Jorge A. Barrero, Laura M. Villamil-Camargo, Jose N. Imaz, Karen Arciniegas-Villa, Jorge A. Rubio-Romero, published by Institute of Mother and Child
This work is licensed under the Creative Commons Attribution 4.0 License.