References
- Ghulmiyyah L, Sibai B. Maternal mortality from preeclampsia/eclampsia. Semin Perinatol. 2012;36(1):56–9. doi: 10.1053/j.semperi.2011.09.011
- Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: Pathophysiology, challenges, and perspectives. Circ Res. 2019;124(7):1094–112. doi: 10.1161/CIRCRESAHA.118.313276
- Garovic VD, Dechend R, Easterling T, Karumanchi SA, McMurtry Baird S, Magee LA, et al. Hypertension in pregnancy: diagnosis, blood pressure goals, and pharmacotherapy: a scientific statement from the American Heart Association. Hypertension. 2022;79(2): e21–e41. doi: 10.1161/HYP.0000000000000208
- Stepan H, Hund M, Andraczek T. Combining biomarkers to predict pregnancy complications and redefine preeclampsia: the angiogenic-placental syndrome. Hypertension. 2020;75(4):918–26. doi: 10.1161/HYPERTENSIONAHA.119.13763
- Capriglione S, Plotti F, Terranova C, Gulino FA, Di Guardo F, Lopez S, et al. Preeclampsia and the challenge of early prediction: reality or utopia? State of art and critical review of literature. J Matern Fetal Neonatal Med. 2020;33(4):677–86. doi: 10.1080/14767058.2018.1495191
- Myatt L. The prediction of preeclampsia: the way forward. Am J Obstet Gynecol. 2022;226(2):S1102–S1107.e8. doi: 10.1016/j.ajog.2020.10.047
- Acharya A, Brima W, Burugu S, Rege T. Prediction of preeclampsia-bench to bedside. Curr Hypertens Rep. 2014;16(11):491. doi: 10.1007/s11906-014-0491-3
- McCarthy FP, Ryan RM, Chappell LC. Prospective biomarkers in preterm preeclampsia: a review. Pregnancy Hypertens. 2018;14:72–8. doi: 10.1016/j.preghy.2018.03.010
- Giannakou K. Prediction of pre-eclampsia. Obstet Med. 2021;14(4):220–4. doi: 10.1177/1753495X20984015
- Roberge S, Bujold E, Nicolaides KH. Aspirin for the prevention of preterm and term preeclampsia: systematic review and meta-analysis. Am J Obstet Gynecol. 2018;218(3):287–293.e1. doi: 10.1016/j.ajog.2017.11.561
- Jung E, Romero R, Yeo L, Gomez-Lopez N, Chaemsaithong P, Jaovisidha A, et al. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226(2):S844–66. doi: 10.1016/j.ajog.2021.11.1356
- Aplin JD, Myers JE, Timms K, Westwood M. Tracking placental development in health and disease. Nat Rev Endocrinol. 2020;16(9):479–94. doi: 10.1038/s41574-020-0372-6
- Li Y, Yan J, Chang HM, Chen ZJ, Leung PCK. Roles of TGF-β superfamily proteins in extravillous trophoblast invasion. Trends Endocrinol Metab. 2021;32(3):170–89. doi: 10.1016/j.tem.2020.12.005
- Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):19–32. doi: 10.1080/1364557032000119616
- Yu L, Li D, Liao QP, Yang HX, Cao B, Fu G, et al. High levels of activin A detected in preeclamptic placenta induce trophoblast cell apoptosis by promoting nodal signaling. J Clin Endocrinol Metab. 2012;97(8):E1370–1379. doi: 10.1210/jc.2011-2729
- Baumann M, Bersinger N, Raio L, Albrecht C, Gerber S, Surbek D. Elevated activin A and soluble endoglin serum levels in first trimester harald pre-eclampsia. Am J Obstet Gynecol. 2013;208(1):S271. doi: 10.1016/j.ajog.2012.10.806
- Lai J, Pinas A, Syngelaki A, Poon LCY, Nicolaides KH. Maternal serum activin-A at 30–33 weeks in the prediction of pre-eclampsia. J Matern Fetal Neonatal Med. 2013;26(8):733–7. doi: 10.3109/14767058.2012.755167
- Tarca AL, Romero R, Benshalom-Tirosh N, Than NG, Gudicha DW, Done B, et al. The prediction of early preeclampsia: results from a longitudinal proteomics study. PloS One. 2019;14(6):e0217273. doi: 10.1371/journal.pone.0217273
- Hao S, You J, Chen L, Zhao H, Huang Y, Zheng L, et al. Changes in pregnancy-related serum biomarkers early in gestation are associated with later development of preeclampsia. PloS One. 2020;15(3):e0230000. doi: 10.1371/journal.pone.0230000
- Wong GP, Andres F, Walker SP, MacDonald TM, Cannon P, Nguyen TV, et al. Circulating activin A is elevated at 36 weeks’ gestation preceding a diagnosis of preeclampsia. Pregnancy Hypertens. 2022;27:23–6. doi: 10.1016/j.preghy.2021.11.006
- Olsen R, Woelkers D, Hull A, LaCoursiere Y. Abnormal second trimester serum analytes are more predictive of earlier and more severe variants of preeclampsia than mild preeclampsia. Am J Obstet Gynecol. 2012;206(1):S261. doi: 10.1016/j.ajog.2012.06.006
- Dugoff L, Cuckle H, Behrendt N, Cioffi-Ragan D, Myers L, Hobbins J. First-trimester prediction of preeclampsia using soluble P-selectin, follistatin-related protein 3, complement 3a, soluble TNF receptor type 1, PAPP-A, AFP, inhibin A, placental growth factor, uterine artery Doppler and maternal characteristics. Am J Obstet Gynecol. 2013;208(1):S252. doi: 10.1016/j.ajog.2012.10.755
- Boucoiran I, Thissier-Levy S, Wu Y, Wei SQ, Luo ZC, Delvin E, et al. Risks for preeclampsia and small for gestational age: predictive values of placental growth factor, soluble fms-like tyrosine kinase-1, and inhibin A in singleton and multiple-gestation pregnancies. Am J Perinatol. 2013;30(7):607–12. doi: 10.1055/s-0032-1329691
- Suri S, Muttukrishna S, Jauniaux E. 2D-ultrasound and endocrinologic evaluation of placentation in early pregnancy and its relationship to fetal birthweight in normal pregnancies and pre-eclampsia. Placenta. 2013;34(9):745–50. doi: 10.1016/j.placenta.2013.05.003
- Park HJ, Kim SH, Jung YW, Shim SS, Kim JY, Cho YK, et al. Screening models using multiple markers for early detection of late-onset preeclampsia in low-risk pregnancy. BMC Pregnancy Childbirth. 2014;14:35. doi: 10.1186/1471-2393-14-35
- Giguère Y, Massé J, Thériault S, Bujold E, Lafond J, Rousseau F, et al. Screening for pre-eclampsia early in pregnancy: performance of a multivariable model combining clinical characteristics and biochemical markers. BJOG. 2015;122(3):402–10. doi: 10.1111/1471-0528.13050
- Kumer K, Fabjan T, Vodušek VF, Sršen TP, Osredkar J. Assessment of maternal serum inhibin A in normal, preeclamptic and intrauterine growth restricted pregnancies. Clin Chem Lab Med. 2016;54(9):eA127–55. doi: 10.1515/cclm-2016-0624
- Chrelias G, Makris GM, Papanota AM, Spathis A, Salamalekis G, Sergentanis TN, et al. Serum inhibin and leptin: risk factors for pre-eclampsia? Clin Chim Acta. 2016;463:84–7. doi: 10.1016/j.cca.2016.10.013
- Broumand F, Lak SS, Nemati F, Mazidi A. A study of the diagnostic value of inhibin A tests for occurrence of preeclampsia in pregnant women. Electron Physician. 2018;10(1):6186–92. doi: 10.19082/6186
- Belovic DK, Plešinac S, Dotlić J, Radojević AS, Akšam S, Cvjetićanin MM, et al. Biochemical markers for prediction of hypertensive disorders of pregnancy. J Med Biochem. 2019;38(1): 71–82. doi: 10.2478/jomb-2018-0001
- Yue CY, Zhang CY, Ni YH, Ying CM. Are serum levels of inhibin A in second trimester predictors of adverse pregnancy outcome? PloS One. 2020;15(5):e0232634. doi: 10.1371/journal.pone.0232634
- Sharabi-Nov A, Kumar K, Fabjan Vodušek V, Premru Sršen T, Tul N, Fabjan T, et al. Establishing a differential marker profile for pregnancy complications near delivery. Fetal Diagn Ther. 2020;47(6):471–84. doi: 10.1159/000502177
- Kim YR, Jung I, Park G, Chang SW, Cho HY. First-trimester screening for early preeclampsia risk using maternal characteristics and estimated placental volume. J Matern Fetal Neonatal Med. 2021;34(7):1155–60. doi: 10.1080/14767058.2019.1628207
- Keikkala E, Forstén J, Ritvos O, Stenman UH, Kajantie E, Hämäläinen E, et al. Serum inhibin-A and PAPP-A2 in the prediction of pre-eclampsia during the first and second trimesters in high-risk women. Pregnancy Hypertens. 2021;25:116–22. doi: 10.1016/j.preghy.2021.05.024
- Garcés MF, Vallejo SA, Sanchez E, Palomino-Palomino MA, Leal LG, Ángel-Muller E, et al. Longitudinal analysis of maternal serum Follistatin concentration in normal pregnancy and preeclampsia. Clin Endocrinol (Oxf). 2015;83(2):229–35. doi: 10.1111/cen.12715
- Charkiewicz K, Jasinska E, Goscik J, Koc-Zorawska E, Zorawski M, Kuc P, et al. Angiogenic factor screening in women with mild preeclampsia – New and significant proteins in plasma. Cytokine. 2018;106:125–30. doi: 10.1016/j.cyto.2017.10.020
- Charkiewicz K. Maternal plasma angiogenic factor screening in women with preeclampsia. J Am Soc Hypertens. 2016;10(4): e40–1. doi: 10.1016/j.jash.2016.03.097
- Nevalainen J, Korpimaki T, Kouru H, Sairanen M, Ryynanen M. Performance of first trimester biochemical markers and mean arterial pressure in prediction of early-onset pre-eclampsia. Metabolism. 2017;75:6–15. doi: 10.1016/j.metabol.2017.07.004
- Luo Q, Han X. Second-trimester maternal serum markers in the prediction of preeclampsia. J Perinat Med. 2017;45(7):809–16. doi: 10.1515/jpm-2016-0249
- Han X, He J, Wang A, Dong M. Serum follistatin-like-3 was elevated in second trimester of pregnant women who subsequently developed preeclampsia. Hypertens Pregnancy. 2014;33(3):277–82. doi: 10.3109/10641955.2013.874439
- Purut YE, Buyukbayrak EE, Ercan F, Orcun A, Menke M, Karsidag AYK. Do first trimester maternal serum follistatin-like 3 levels predict preeclampsia and/or related adverse pregnancy outcomes? Clin Exp Obstet Gynecol. 2019;46(2):195–200. doi: 10.12891/ceog4423.2019
- Horvath R, Maski M, Zsengeller Z, Lo A, Pernicone E, Rigo J, et al. Follistatin-like 3 protein (FSTL3) is upregulated in preeclampsia. Pregnancy Hypertens. 2016;6(3):144. doi: 10.1016/j.preghy.2016.08.016
- Li L, Zheng Y, Zhu Y, Li J. Serum biomarkers combined with uterine artery Doppler in prediction of preeclampsia. Exp Ther Med. 2016;12(4):2515–20. doi: 10.3892/etm.2016.3625
- Xu YT, Shen MH, Jin AY, Li H, Zhu R. Maternal circulating levels of transforming growth factor-β superfamily and its soluble receptors in hypertensive disorders of pregnancy. Int J Gynaecol Obstet. 2017;137(3):246–52. doi: 10.1002/ijgo.12142
- Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci. 2019;76(18):3479–96. doi: 10.1007/s00018-019-03104-6
- Muttukrishna S. Role of inhibin in normal and high-risk pregnancy. Semin Reprod Med. 2004;22(3):227–34. doi: 10.1055/s-2004-831898
- Birdsall M, Ledger W, Groome N, Abdalla H, Muttukrishna S. Inhibin A and activin A in the first trimester of human pregnancy. J Clin Endocrinol Metab. 1997;82(5):1557–60. doi: 10.1210/jcem.82.5.3934
- Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in mammalian physiology. Physiol Rev. 2019;99(1): 739–80. doi: 10.1152/physrev.00002.2018
- O’Connor AE. Serum activin A and follistatin concentrations during human pregnancy: a cross-sectional and longitudinal study. Hum Reprod. 1999;14(3):827–32. doi: 10.1093/humrep/14.3.827
- Welt CK. The physiology and pathophysiology of inhibin, activin and follistatin in female reproduction. Curr Opin Obstet Gynecol. 2002;14(3):317–23. doi: 10.1097/00001703-200206000-00012
- Parfenova OK, Kukes VG, Grishin DV. Follistatin-like proteins: structure, functions and biomedical importance. Biomedicines. 2021;9(8):999. doi: 10.3390/biomedicines9080999
- Yokoyama Y, Nakamura T, Nakamura R, Irahara M, Aono T, Sugino H. Identification of activins and follistatin proteins in human follicular fluid and placenta. J Clin Endocrinol Metab. 1995;80(3):915–21. doi: 10.1210/jcem.80.3.7883850
- Fullerton PT, Monsivais D, Kommagani R, Matzuk MM. Follistatin is critical for mouse uterine receptivity and decidualization. Proc Natl Acad Sci. 2017;114(24). doi: 10.1073/pnas.1620903114
- Köninger A, Schmidt B, Damaske D, Birdir C, Enekwe A, Kimmig R, et al. Follistatin during pregnancy and its potential role as an ovarian suppressing agent. Eur J Obstet Gynecol Reprod Biol. 2017;212:150–4. doi: 10.1016/j.ejogrb.2017.03.001
- Santibañez JF, Quintanilla M, Bernabeu C. TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clin Sci (Lond) 1979. 2011;121(6):233–51. doi: 10.1042/CS20110086
- Moustakas A, Heldin CH. The regulation of TGFbeta signal transduction. Development. 2009;136(22):3699–714. doi: 10.1242/dev.030338
- Schneider-Kolsky ME, Manuelpillai U, Waldron K, Dole A, Wallace EM. The distribution of activin and activin receptors in gestational tissues across human pregnancy and during labour. Placenta. 2002;23(4):294–302. doi: 10.1053/plac.2002.0787
- Stoikos CJ, Harrison CA, Salamonsen LA, Dimitriadis E. A distinct cohort of the TGFβ superfamily members expressed in human endometrium regulate decidualization. Hum Reprod. 2008;23(6):1447–56. doi: 10.1093/humrep/den110
- Li Y, Klausen C, Zhu H, Leung PCK. Activin A increases human trophoblast invasion by inducing SNAIL-mediated MMP2 up-regulation through ALK4. J Clin Endocrinol Metab. 2015;100(11):E1415–27. doi: 10.1210/jc.2015-2134
- Silver HM, Lambert-Messerlian GM, Reis FM, Diblasio AM, Petraglia F, Canick JA. Mechanism of increased maternal serum total activin A and inhibin A in preeclampsia. J Soc Gynecol Investig. 2002;9(5):308–12. doi: 10.1016/s1071-5576(02)00165-x
- Li Y, Klausen C, Cheng JC, Zhu H, Leung PCK. Activin A, B, and AB increase human trophoblast cell invasion by up-regulating N-Cadherin. J Clin Endocrinol Metab. 2014;99(11):E2216–25. doi: 10.1210/jc.2014-2118
- Zhu S, Li Z, Cui L, Ban Y, Leung PCK, Li Y, et al. Activin A increases human trophoblast invasion by upregulating integrin β1 through ALK4. FASEB J. 2021;35(2). doi: 10.1096/fj.202001604R
- Kokkinos MI, Murthi P, Wafai R, Thompson EW, Newgreen DF. Cadherins in the human placenta – epithelial–mesenchymal transition (EMT) and placental development. Placenta. 2010;31(9):747–55. doi: 10.1016/j.placenta.2010.06.017
- Chen J, Khalil RA. Matrix metalloproteinases in normal pregnancy and preeclampsia. Prog Mol Biol Transl Sci. 2017;148: 87–165. doi: 10.1016/bs.pmbts.2017.04.001
- Shu C, Han S, Hu C, Chen C, Qu B, He J, et al. Integrin β1 regulates proliferation, apoptosis, and migration of trophoblasts through activation of phosphoinositide 3 kinase/protein kinase B signaling. J Obstet Gynaecol Res. 2021;47(7):2406–16. doi: 10.1111/jog.14782
- Brkić J, Dunk C, Shan Y, O’Brien JA, Lye P, Qayyum S, et al. Differential role of Smad2 and Smad3 in the acquisition of an endovascular trophoblast-like phenotype and preeclampsia. Front Endocrinol (Lausanne). 2020;11:436. doi: 10.3389/fendo.2020.00436
- Lim R, Acharya R, Delpachitra P, Hobson S, Sobey CG, Drummond GR, et al. Activin and NADPH-oxidase in preeclampsia: insights from in vitro and murine studies. Am J Obstet Gynecol. 2015;212(1):86.e1–12. doi: 10.1016/j.ajog.2014.07.021
- Hobson SR, Lim R, Mockler JC, Gurusinghe S, Wallace EM. Role of activin A in the pathogenesis of endothelial cell dysfunction in preeclampsia. In: Murthi P, Vaillancourt C, editors. Preeclampsia. New York, NY: Springer, 2018: 39–52. ISBN: 978-1-4939-7498-6
- Shahul S, Ramadan H, Nizamuddin J, Mueller A, Patel V, Dreixler J, et al. Activin A and late postpartum cardiac dysfunction among women with hypertensive disorders of pregnancy hypertension. 2018;72(1):188–93. doi: 10.1161/HYPERTENSIONAHA.118.10888
- Naseem H, Dreixler J, Mueller A, Tung A, Dhir R, Chibber R, et al. Antepartum aspirin administration reduces activin A and cardiac global longitudinal strain in preeclamptic women. J Am Heart Assoc. 2020;9(12):e015997. doi: 10.1161/JAHA.119.015997
- Jones RL. Inhibin and activin subunits are differentially expressed in endometrial cells and leukocytes during the menstrual cycle, in early pregnancy and in women using progestin-only contraception. Mol Hum Reprod. 2000;6(12):1107–17. doi: 10.1093/molehr/6.12.1107
- Minami S, Yamoto M, Nakano R. Immunohistochemical localization of inhibin/activin subunits in human placenta. Obstet Gynecol. 1992;80(3 Pt 1):410–4.
- Bearfield C, Jauniaux E, Groome N, Sargent IL, Muttukrishna S. The secretion and effect of inhibin A, activin A and follistatin on first-trimester trophoblasts in vitro. Eur J Endocrinol. 2005;152(6):909–16. doi: 10.1530/eje.1.01928
- Lambert-Messerlian GM, Pinar H, Laprade E, Tantravahi U, Schneyer A, Canick JA. Inhibins and activins in human fetal abnormalities. Mol Cell Endocrinol. 2004;225(1–2):101–8. doi: 10.1016/j.mce.2004.02.019
- Taché V, Baer RJ, Currier RJ, Li CS, Towner D, Waetjen LE, et al. Population-based biomarker screening and the development of severe preeclampsia in California. Am J Obstet Gynecol. 2014;211(4):377.e1–377.e8. doi: 10.1016/j.ajog.2014.03.026
- Kar M. Role of Biomarkers in early detection of preeclampsia. J Clin Diagn Res. 2014; 8(4): BE01–BE04. doi: 10.7860/JCDR/2014/7969.4261
- Fitzgerald B, Levytska K, Kingdom J, Walker M, Baczyk D, Keating S. Villous trophoblast abnormalities in extremely pre-term deliveries with elevated second trimester maternal serum hCG or inhibin-A. Placenta. 2011;32(4):339–45. doi: 10.1016/j.placenta.2011.01.018
- Depoix CL, de Selliers I, Hubinont C, Debieve F. HIF1A and EPAS1 potentiate hypoxia-induced upregulation of inhibin alpha chain expression in human term cytotrophoblasts in vitro. Mol Hum Reprod. 2017;23(3):199–209. doi: 10.1093/molehr/gax002
- Alldred SK, Takwoingi Y, Guo B, Pennant M, Deeks JJ, Neilson JP, et al. First and second trimester serum tests with and without first trimester ultrasound tests for Down's syndrome screening. Cochrane Database Syst Rev. 2017;3:CD012599. doi: 10.1002/14651858.CD012599
- Rolnik DL, Nicolaides KH, Poon LC. Prevention of preeclampsia with aspirin. Am J Obstet Gynecol. 2022;226(2S):S1108–19. doi: 10.1016/j.ajog.2020.08.045
- Florio P, Luisi S, Ciarmela P, Severi FM, Bocchi C, Petraglia F. Inhibins and activins in pregnancy. Mol Cell Endocrinol. 2004;225(1):93–100. doi: 10.1016/j.mce.2004.02.018
- Hobson SR, Wallace EM, Chan YF, Edwards AG, Teoh MWT, Khaw APL. Mirroring preeclampsia: the molecular basis of Ballantyne syndrome. J Matern Fetal Neonatal Med. 2020;33(5): 768–73. doi: 10.1080/14767058.2018.1500550
- Xie J, Xu Y, Wan L, Wang P, Wang M, Dong M. Involvement of follistatin-like 3 in preeclampsia. Biochem Biophys Res Commun. 2018;506(3):692–7. doi: 10.1016/j.bbrc.2018.10.139
- Xu Y, Xie J, Wan L, Wang M, Xu Y, Wang H, et al. Follistatin-like 3, an activin A binding protein, is involved in early pregnancy loss. Biomed Pharmacother. 2020;121:109577. doi: 10.1016/j.biopha.2019.109577
- Schneyer A, Sidis Y, Xia Y, Saito S, Re E del, Lin HY, et al. Differential actions of follistatin and follistatin-like 3. Mol Cell Endocrinol. 2004;225(1):25–8. doi: 10.1016/j.mce.2004.02.009
- Xie J, Zhu H, Chang HM, Klausen C, Dong M, Leung PCK. GDF8 promotes the cell invasiveness in human trophoblasts by upregulating the expression of follistatin-like 3 through the ALK5-SMAD2/3 signaling pathway. Front Cell Dev Biol. 2020;8:573781. doi: 10.3389/fcell.2020.573781
- Matsuzaki K. Smad phosphoisoform signaling specificity: the right place at the right time. Carcinogenesis. 2011;32(11): 1578–88. doi: 10.1093/carcin/bgr172
- Adu-Gyamfi EA, Tanam-Djankpa F, Nelson W, Czika A, Kumar-Sah S, Lamptey J, et al. Activin and inhibin signaling: from regulation of physiology to involvement in the pathology of the female reproductive system. Cytokine. 2020;133:155105. doi: 10.1016/j.cyto.2020.155105