References
- Alanis AJ. Resistance to antibiotics: Are we in the post-antibiotic era? Arch Med Res. 2005 Nov-Dec;36(6):697–705. https://doi.org/10.1016/j.arcmed.2005.06.009
- Alvarez L, Kumaran KS, Nitha B, Sivasubramani K. Evaluation of biofilm formation and antimicrobial susceptibility (drug resistance) of Candida albicans isolates. Braz J Microbiol. 2025 Mar;56(1):353–364. https://doi.org/10.1007/s42770–024-01558-w
- Ayed A, Essid R, Jallouli S, Zaied A B, Fdhila S B, Limam F, Tabbene O. Antifungal activity of volatile organic compounds (VOCs) produced by Streptomyces olivochromogenes S103 against Candida albicans. Euro-Mediterr J Environ Integr. 2022 Apr;7(2):251–255. https://doi.org/10.1007/s41207-022-00302-w
- Chambers HF, Deleo FR. Waves of resistance: Staphylococcus aureus in the antibiotic era. Nat Rev Microbiol. 2009 Sep;7(9):629–641. https://doi.org/10.1038/nrmicro2200
- Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, Al-Ouqaili MTS, Chinedu Ikem J, Victor Chigozie U, Saki M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal. 2022 Sep;36(9):e24655. https://doi.org/10.1002/jcla.24655
- Church NA, McKillip JL. Antibiotic resistance crisis: Challenges and imperatives. Biologia. 2021 Feb;76(5):1535–1550. https://doi.org/10.1007/s11756-021-00697-x
- Cowen LE, Anderson JB, Kohn LM. Evolution of drug resistance in Candida albicans. Annu Rev Microbiol. 2002;56:139–165. https://doi.org/10.1146/annurev.micro.56.012302.160907
- Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair JMA. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol. 2023 May;21(5):280–295. https://doi.org/10.1038/s41579-022-00820-y
- EFSA Panel on Biological Hazards (BIOHAZ); Koutsoumanis K, Allende A, Álvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, et al. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J. 2021 Jun;19(6):e06651. https://doi.org/10.2903/j.efsa.2021.6651
- Feglo PK, Gbedema SY, Quay SNA, Adu-Sarkodie Y, Opoku-Okrah C. Occurrence, species distribution and antibiotic resistance of Proteus isolates: A case study at the Komfo Anokye Teaching Hospital (KATH) in Ghana. Int J Pharma Sci Res. 2010 Oct;1(9):347–352.
- Foster TJ. The Staphylococcus aureus “superbug”. J Clin Invest. 2004 Dec;114(12):1693–1696. https://doi.org/10.1172/jci23825
- Hassen W, Danioux A, Oueslati A, Santana-Rodríguez JJ, Sire O, Sedrati M, Ben Mansour H. Dissemination of antibiotic-resistant bacteria associated with microplastics collected from Monastir and Mahdia coasts (Tunisia). Microb Pathog. 2025 Jan;198:107193. https://doi.org/10.1016/j.micpath.2024.107193
- Higginbotham SJ, Murphy CD. Identification and characterisation of a Streptomyces sp. isolate exhibiting activity against methicillin-resistant Staphylococcus aureus. Microbiol Res. 2010;165(1):82–86. https://doi.org/10.1016/j.micres.2008.12.004
- Hinchliffe S, Butcher A, Rahman MM. The AMR problem: Demanding economies, biological margins, and co-producing alternative strategies. Palgrave Commun. 2018 Nov;4:142. https://doi.org/10.1057/s41599-018-0195-4
- Inoue H. Strategic approach for combating antimicrobial resistance (AMR). Glob Health Med. 2019 Dec;1(2):61–64. https://doi.org/10.35772/ghm.2019.01026
- Jiang S, Li H, Zhang L, Mu W, Zhang Y, Chen T, Wu J, Tang H, Zheng S, Liu Y, et al. Generic Diagramming Platform (GDP): A comprehensive database of high-quality biomedical graphics. Nucleic Acids Res. 2025 Jan;53(D1):D1670–D1676. https://doi.org/10.1093/nar/gkae973
- Larsson DGJ, Flach CF. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022 May;20(5):257–269. https://doi.org/10.1038/s41579-021-00649-x
- Larsson DGJ, Gaze WH, Laxminarayan R, Topp E. AMR, One Health and the environment. Nat Microbiol. 2023 May;8(5):754–755. https://doi.org/10.1038/s41564-023-01351-9
- Lee KH, Park SJ, Choi SJ, Park JY. Proteus vulgaris and Proteus mirabilis decrease Candida albicans biofilm formation by suppressing morphological transition to its hyphal form. Yonsei Med J. 2017 Nov;58(6):1135–1143. https://doi.org/10.3349/ymj.2017.58.6.1135
- Levy SB. The challenge of antibiotic resistance. Sci Am. 1998 Mar;278(3):46–53. https://doi.org/10.1038/scientificameri-can0398-46
- Luo YJ, Sun HM, He N, Yuan LJ, Xie YY. [Isolation and antibacterial activity of Actinomycetes from the nodules and rhizosphere Soil of Hippophae rhamnoides in Tibet] (in Chinese). Biotechnol Bull. 2021 Mar;37(11):225–236. https://doi.org/10.13560/j.cnki. biotech.bull.1985.2021-0288
- Manimaran M, Gopal JV, Kannabiran K. Antibacterial activity of Streptomyces sp. VITMK1 isolated from mangrove soil of Pichavaram, Tamil Nadu, India. Proc Natl Acad Sci India Sect B Biol Sci. 2017 Aug;87(2):499–506. https://doi.org/10.1007/s40011-015- 0619-5
- Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: Causes, consequences, and management. Front Public Health. 2014 Sep;2:145. https://doi.org/10.3389/fpubh.2014.00145
- Moo CL, Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Lim SH, Lai KS. Mechanisms of antimicrobial resistance (AMR) and alternative approaches to overcome AMR. Curr Drug Discov Technol. 2020;17(4):430–447. https://doi.org/10.2174/1570163816666190304122219
- Nelson DW, Moore J E, Rao JR. Antimicrobial resistance (AMR): Significance to food quality and safety. Food Qual Saf. 2019 Apr;3(1):15–22. https://doi.org/10.1093/fqsafe/fyz003
- Niu G, Li W. Next-generation drug discovery to combat antimicrobial resistance. Trends Biochem Sci. 2019 Nov;44(11):961–972. https://doi.org/10.1016/j.tibs.2019.05.005
- Pereira R, Dos Santos Fontenelle RO, de Brito EHS, de Morais SM. Biofilm of Candida albicans: Formation, regulation and resistance. J Appl Microbiol. 2021 Jul;131(1):11–22. https://doi.org/10.1111/jam.14949
- Priyanka KP, Sukirtha TH, Balakrishna KM, Varghese T. Microbicidal activity of TiO2 nanoparticles synthesised by sol-gel method. IET Nanobiotechnol. 2016 Apr;10(2):81–86. https://doi.org/10.1049/iet-nbt.2015.0038
- Priyanto JA, Prastya ME, Hening ENW, Suryanti E, Kristiana R. Two strains of Endophytic Bacillus velezensis carrying antibiotic-biosynthetic genes show antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA). Indian J Microbiol. 2024 Dec;64(4):1884–1893. https://doi.org/10.1007/s12088-024-01262-1
- Ramzan M, Raza A, un Nisa Z, Abdel-Massih RM, Bakain RA, Cabrerizo FM, Dela Cruz TE, Aziz RK, Musharraf SG. Detection of antimicrobial resistance (AMR) and antimicrobial susceptibility testing (AST) using advanced spectroscopic techniques: A review. TrAC Trends Anal Chem. 2024 Mar;172:117562. https://doi.org/10.1016/j.trac.2024.117562
- Semenzato G, Bernacchi A, Amata S, Bechini A, Berti F, Calonico C, Catania V, Esposito A, Puglia AM, Piccionello AP, et al. Antibacterial properties of bacterial endophytes isolated from the medicinal plant Origanum heracleoticum L. Front Biosci. 2024 Mar;29(3):111. https://doi.org/10.31083/j.fbl2903111
- Singh G, Kumar P. Evaluation of antimicrobial efficacy of flavonoids of Withania somnifera L. Indian J Pharm Sci. 2011 Jul;73(4):473–478.
- Srivastava J, Chandra H, Nautiyal AR, Kalra SJ. Antimicrobial resistance (AMR) and plant-derived antimicrobials (PDAms) as an alternative drug line to control infections. 3 Biotech. 2014 Oct;4(5):451–460. https://doi.org/10.1007/s13205-013-0180-y
- Tang KWK, Millar BC, Moore JE. Antimicrobial Resistance (AMR). Br J Biomed Sci. 2023 Jun;80:11387. https://doi.org/10.3389/bjbs.2023.11387
- Urban-Chmiel R, Marek A, Stępień-Pyśniak D, Wieczorek K, Dec M, Nowaczek A, Osek J. Antibiotic resistance in bacteria – A review. Antibiotics. 2022 Aug;11(8):1079. https://doi.org/10.3390/antibiotics11081079
- Valan Arasu M, Duraipandiyan V, Agastian P, Ignacimuthu S. In vitro antimicrobial activity of Streptomyces spp. ERI-3 isolated from Western Ghats rock soil (India). J Mycol Med. 2009 Feb;19(1):22–28. https://doi.org/10.1016/j.mycmed.2008.12.002
- Viswanathan VK. Off-label abuse of antibiotics by bacteria. Gut Microbes. 2014 Jan-Feb;5(1):3–4. https://doi.org/10.4161/gmic.28027
- Wang MY, Huang MJ, Li Q, Li SH, Huang HQ, Li WJ. [Diversity and antimicrobial activities of culturable endophytic actinomyces in the roots of Psammosilene tunicoides in Yunnan province] (in Chinese). Acta Microbiol Sin. 2022 Apr;62(5):1905–1918. https://doi.org/10.13343/j.cnki.wsxb.20210648
- Wang SY, Wang YJ, Qiu KY, Li X C, Qiu AZ, Zhu YC, Zhang S, Si HY, Zhang YQ, Feng JL, et al. [Variation regularity of stoichiometric characteristics of soil microbial biomass C, N, and P along the altitudinal gradient and their influencing factors in Helan Mountains] (in Chinese). Pratac Sci. 2024;41(7):1558–1570. https://doi.org/10.11829/j.issn.1001-0629.2023-0572
- Wu MY, Chen L, Pang DB, Liu B, Liu LZ, Qiu KY, Li XB. [Changes of the concentrations and stoichiometry of carbon, nitrogen and phosphorus in soil aggregates along different altitudes of Helan Mountains, Northwest China] (in Chinese). Chin J Appl Ecol. 2021 Apr;32(4):1241–1249. https://doi.org/10.13287/j.1001-9332.202104.029
- Yang JQ, Wang Y, Zhou XR, Wu XJ. [Synthesis and antibacterial activities of novel sulfonamide derivatives containing a fused ring] (in Chinese). Acta Pharm Sin. 2020 Nov;56(3):835–840. https://doi.org/10.16438/j.0513-4870.2020-1810