References
- Argun YA, Karacali A, Calisir U, Kilinc N. Composting as a waste management method. J Int Environ Appl Sci. 2017;12(3):244–255.
- Arslan Topal EI, Ünlü A, Topal M. Effect of aeration rate on elimination of coliforms during composting of vegetable–fruit wastes. Int J Recycl Org Waste Agricult. 2016;5:243–249. https://doi. org/10.1007/s40093-016-0134-6
- Azarbad H, Niklińska M, Laskowski R, van Straalen NM, van Gestel CA, Zhou J, He Z, Wen C, Röling WF. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiol Ecol. 2015;91(1):1–11. https://doi.org/10.1093/femsec/fiu003
- Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, Wilkins MJ, Wrighton KC, Williams KH, Banfield JF. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature. 2015;523(7559):208–211. https://doi.org/10.1038/nature14486
- Cao G, Song T, Shen Y, Jin Q, Feng W, Fan L. Cai W. Diversity of bacterial and fungal communities in wheat straw compost for Agaricus bisporus cultivation. HortScience. 2019;54(1):100–109. https://doi.org/10.21273/hortsci13598-18
- Cao J, Li R, Qu H, Wang P, Fu J, Chen M, Chen Y. Effects of the membrane-covered technology and superphosphate on the compost quality and nitrogen-containing gas emissions during aerobic composting. BioResources. 2022;17(1);1781–1793. https://doi. org/10.15376/biores.17.1.1781-1793
- Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–3356. https://doi. org/10.1038/nmeth.f.303
- Castro-Alba V, Lazarte CE, Perez-Rea D, Carlsson NG, Almgren A, Bergenståhl B, Granfeldt Y. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J Sci Food Agric. 2019;99(11):5239– 5248. https://doi.org/10.1002/jsfa.9793
- Cheung HN, Huang GH, Yu H. Microbial-growth inhibition during composting of food waste: Effects of organic acids. Bioresour Technol. 2010;101(15):5925–5934. https://doi.org/10.1016/j. biortech.2010.02.062
- De Corato U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci Total Environ. 2020;738:139840. https://doi.org/10.1016/j.scitotenv.2020.139840
- Díaz-Valderrama JR, Nguyen HDT, Aime MC. Wallemia peruviensis sp. nov., a new xerophilic fungus from an agricultural setting in South America. Extremophiles. 2017;21(6):1017–1025. https://doi.org/10.1007/s00792-017-0960-0
- Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–2461. https://doi. org/10.1093/bioinformatics/btq461
- Fracchia L, Dohrmann AB, Martinotti MG, Tebbe CC. Bacterial diversity in a finished compost and vermicompost: Differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl Microbiol Biotechnol. 2006;71(6):942–952. https://doi.org/10.1007/s00253-005-0228-y
- Hartl J, Kiefer P, Meyer F, Vorholt JA. Longevity of major coenzymes allows minimal de novo synthesis in microorganisms. Nat Microbiol. 2017;2:17073. https://doi.org/10.1038/nmicrobiol.2017.73
- Hoang HG, Thuy BTP, Lin C, Vo DN, Tran HT, Bahari MB, Le VG, Vu CT. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. Chemosphere. 2022;300:134514. https://doi.org/10.1016/j.chemosphere.2022.134514
- Jančič S, Zalar P, Kocev D, Schroers HJ, Džeroski S, Gunde-Cimerman N. Halophily reloaded: New insights into the extremophilic life-style of Wallemia with the description of Wallemia hederae sp. nov. Fungal Diversity 2016;76;97–118. https://doi.org/10.1007/s13225-015-0333-x
- Janczak D, Malińska K, Czekała W, Cáceres R, Lewicki A, Dach J. Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw. Waste Manag. 2017;66:36–45. https://doi.org/10.1016/j.wasman.2017.04.033
- Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M. KEGG: Biological systems database as a model of the real world. Nucleic Acids Res. 2025 Jan;53(D1):D672–D677. https://doi.org/10.1093/nar/gkae909
- Khleborodova A, Gamboa-Tuz SD, Ramos M, Segata N, Waldron L, Oh S. lefser: Implementation of metagenomic biomarker discovery tool, LEfSe, in R. Bioinformatics. 2024 Nov;40(12):b-tae707. https://doi.org/10.1093/bioinformatics/btae707
- Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D, Knight R. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2011;13(1):47–58. https://doi.org/10.1038/nrg3129
- Leconte MC, Mazzarino MJ, Satti P, Crego MP. Nitrogen and phosphorus release from poultry manure composts: The role of carbonaceous bulking agents and compost particle sizes. Biol Fertil Soils. 2011;47:897–906. https://doi.org/10.1007/s00374-011-0591-z
- Li X, Li Y, Wu T, Qu C, Ning P, Shi J, Tian X. Potassium fertilization combined with crop straw incorporation alters soil potassium fractions and availability in northwest China: An incubation study. PLoS One. 2020;15(7):e0236634. https://doi.org/10.1371/journal. pone.0236634
- Liaw A, Wiener M. Classification and Regression by randomForest. R News. 2002;2(3):18–22 [cited 2025 May 05]. Available from https://CRAN.R-project.org/doc/Rnews
- Liu N, Zhou J, Han L, Huang G. Characterization of lignocellulosic compositions’ degradation during chicken manure composting with added biochar by phospholipid fatty acid (PLFA) and correlation analysis. Sci Total Environ. 2017;586:1003–1011. https://doi. org/10.1016/j.scitotenv.2017.02.081
- Luo Y, Shen J, Wang X, Xiao H, Yaser AZ, Fu J. Recent advances in research on microbial community in the composting process. Biomass Conv. Bioref. 2024;14:23319–23333. https://doi.org/10.1007/s13399-023-04616-9
- Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011 Nov 1;27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507
- Manea EE, Bumbac C. Sludge composting – Is this a viable solution for wastewater sludge management? Water. 2024;16(16):2241. https://doi.org/10.3390/w16162241
- Masunga RH, Uzokwe VN, Mlay PD, Odeh I, Singh A, Buchan D, De Neve S. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl Soil Ecol. 2016;101;185–193. https://doi.org/10.1016/j.apsoil.2016.01.006
- Nakasaki K, Araya S, Mimoto H. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting. Bioresour Technol. 2013;144:521–528. https://doi.org/10.1016/j.biortech.2013.07.005
- Nakasaki K, Hirai H, Mimoto H, Quyen TNM, Koyama M, Takeda K. Succession of microbial community during vigorous organic matter degradation in the primary fermentation stage of food waste composting. Sci Total Environ. 2019;671;1237–1244. https://doi. org/10.1016/j.scitotenv.2019.03.341
- Partanen P, Hultman J, Paulin L, Auvinen P, Romantschuk M. Bacterial diversity at different stages of the composting process. BMC Microbiol. 2010;10:94. https://doi.org/10.1186/1471-2180- 10-94
- Paterson RRM, Lima N. Filamentous fungal human pathogens from food emphasising Aspergillus, Fusarium and Mucor. Microorganisms. 2017;5(3):44. https://doi.org/10.3390/microorganisms5030044
- Peng SL, Ge ZW, Liu GC, Mao LF. Environmental drivers of soil microbial activity and diversity along an elevational gradient. J Mt Sci. 2022;19:1336–1347. https://doi.org/10.1007/s11629-021- 7083-x
- Pitt JI, Hocking AD. Fungi and food spoilage. New York (USA): Springer; 1987.
- Pollo SM, Zhaxybayeva O, Nesbø CL. Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae. Can J Microbiol. 2015;61(9):655–670. https://doi. org/10.1139/cjm-2015-0073
- Qiao C, Penton CR, Liu C, Tao C, Deng X, Ou Y, Liu H, Li R. Patterns of fungal community succession triggered by C/N ratios during composting. J Hazard Mater. 2021;401:123344. https://doi. org/10.1016/j.jhazmat.2020.123344
- Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013 Jan;41(Database_issue):D590–D596. https://doi. org/10.1093/nar/gks1219
- Rastogi M, Nandal M, Khosla B. Microbes as vital additives for solid waste composting. Heliyon. 2020;6(2):e03343. https://doi. org/10.1016/j.heliyon.2020.e03343
- Rosolem CA, Calonego JC, Foloni JSS. Potassium leaching from millet straw as affected by rainfall and potassium rates. Commun Soil Sci Plant Anal. 2005;36(7–8);1063–1074. https://doi. org/10.1081/css-200050497
- Sathiyapriya, S, Prabhaharan J, Sheeba S, Anandham R, Ilamaran M. Nutrient recycling through composting: Harnessing agricultural wastes for sustainable crop production. Plant Sci Today. 2024;11(sp4):01–13. https://doi.org/10.14719/pst.5627
- Schloss PD, Hay AG, Wilson DB, Gossett JM, Walker LP. Quantifying bacterial population dynamics in compost using 16S rRNA gene probes. Appl Microbiol Biotechnol. 2005;66(4):457–463. https://doi.org/10.1007/s00253-004-1727-y
- Wang G, Du Y, Ma X, Ye F, Qin Y, Wang Y, Xiang Y, Tao R, Chen T. Thermophilic nucleic acid polymerases and their application in xenobiology. Int J Mol Sci. 2022;23(23):14969. https://doi. org/10.3390/ijms232314969
- Wang K, Mao H, Wang Z, Tian Y. Succession of organics metabolic function of bacterial community in swine manure composting. J Hazard Mater. 2018;360:471–480. https://doi.org/10.1016/j. jhazmat.2018.08.032
- Wei Y, Wu D, Wei D, Zhao Y, Wu J, Xie X, Zhang R, Wei Z. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities. Bioresour Technol. 2019;271:66–74. https://doi.org/10.1016/j.biortech.2018.09.081
- Wickham H. ggplot2: Elegant graphics for data analysis. New York (USA): Springer-Verlag; 2016.
- Wu J, Wei Z, Zhu Z, Zhao Y, Jia L, Lv P. Humus formation driven by ammonia-oxidizing bacteria during mixed materials composting. Bioresour Technol. 2020 Sep;311:123500. https://doi.org/10.1016/j. biortech.2020.123500
- Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W, Han L. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 2014;7(9):2934–2938. https://doi.org/10.1039/c4ee01624f
- Xiong J, Ma S, He X, Han L, Huang G. Nitrogen transformation and dynamic changes in related functional genes during functional-membrane covered aerobic composting. Bioresour Technol. 2021;332:125087. https://doi.org/10.1016/j.biortech.2021.125087
- Xiong J, Zhuo Q, Su Y, Qu H, He X, Han L, Huang G. Nitrogen evolution during membrane-covered aerobic composting: Interconversion between nitrogen forms and migration pathways. J Environ Manage. 2023;345:118727. https://doi.org/10.1016/j.jenvman.2023.118727
- Xu M, Yang M, Sun H, Meng J, Li Y, Gao M, Wang Q, Wu C. Role of multistage inoculation on the co-composting of food waste and biogas residue. Bioresour Technol. 2022;361:127681. https://doi. org/10.1016/j.biortech.2022.127681
- Yang L, Jie G, She-Qi Z, Long-Xiang S, Wei S, Xun Q, Man-Li D, Ya-Nan Y, Xiao-Juan W. Effects of adding compound microbial inoculum on microbial community diversity and enzymatic activity during co-composting. Environ Eng Sci. 2018;35(4):270–278. https://doi.org/10.1089/ees.2016.0423
- Yaser AZ, Sarjadi MS, Lamaming J. Cellulose: Development, processing, and applications. Boca Raton (USA): CRC Press; 2024. https://doi.org/10.1201/9781003358084
- Yin Y, Yang C, Tang J, Gu J, Li H, Duan M, Wang X, Chen R. Bamboo charcoal enhances cellulase and urease activities during chicken manure composting: Roles of the bacterial community and metabolic functions. J Environ Sci. 2021;108:84–95. https://doi. org/10.1016/j.jes.2021.02.007
- Zajc J, Gunde-Cimerman N. The genus Wallemia-from contamination of food to health threat. Microorganisms. 2018;6(2):46. https://doi.org/10.3390/microorganisms6020046
- Zalar P, Sybren de Hoog G, Schroers HJ, Frank JM, Gunde-Cimerman N. Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek. 2005;87(4):311–328. https://doi.org/10.1007/s10482-004-6783-x
- Zhang J, Fan B, Zhao L, Zhao C, Yang F. Biochar promotes compost humification by regulating bacterial and fungal communities. Front Microbiol. 2024;15:1470930. https://doi.org/10.3389/fmicb.2024.1470930
- Zhu L, Huang C, Li L, Wang S, Wu X, Shan G, Tian Y. Innovative insights into organic nitrogen degradation through protein family domains analysis in chicken and pig manure composting using metagenomic sequencing. Bioresour Technol. 2024;406:131048. https://doi.org/10.1016/j.biortech.2024.131048
- Zucconi F, Pera A, Forte M, Bertoldi MD. Evaluating toxicity of immature compost. Biocycle, 1981;22:54–57.