Have a personal or library account? Click to login
The Dynamic Changes of Nutrient and Microbial Succession in Nanomembrane Aerobic Composting of Tomato Straw Cover

The Dynamic Changes of Nutrient and Microbial Succession in Nanomembrane Aerobic Composting of Tomato Straw

Open Access
|Sep 2025

References

  1. Argun YA, Karacali A, Calisir U, Kilinc N. Composting as a waste management method. J Int Environ Appl Sci. 2017;12(3):244–255.
  2. Arslan Topal EI, Ünlü A, Topal M. Effect of aeration rate on elimination of coliforms during composting of vegetable–fruit wastes. Int J Recycl Org Waste Agricult. 2016;5:243–249. https://doi. org/10.1007/s40093-016-0134-6
  3. Azarbad H, Niklińska M, Laskowski R, van Straalen NM, van Gestel CA, Zhou J, He Z, Wen C, Röling WF. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients. FEMS Microbiol Ecol. 2015;91(1):1–11. https://doi.org/10.1093/femsec/fiu003
  4. Brown CT, Hug LA, Thomas BC, Sharon I, Castelle CJ, Singh A, Wilkins MJ, Wrighton KC, Williams KH, Banfield JF. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature. 2015;523(7559):208–211. https://doi.org/10.1038/nature14486
  5. Cao G, Song T, Shen Y, Jin Q, Feng W, Fan L. Cai W. Diversity of bacterial and fungal communities in wheat straw compost for Agaricus bisporus cultivation. HortScience. 2019;54(1):100–109. https://doi.org/10.21273/hortsci13598-18
  6. Cao J, Li R, Qu H, Wang P, Fu J, Chen M, Chen Y. Effects of the membrane-covered technology and superphosphate on the compost quality and nitrogen-containing gas emissions during aerobic composting. BioResources. 2022;17(1);1781–1793. https://doi. org/10.15376/biores.17.1.1781-1793
  7. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–3356. https://doi. org/10.1038/nmeth.f.303
  8. Castro-Alba V, Lazarte CE, Perez-Rea D, Carlsson NG, Almgren A, Bergenståhl B, Granfeldt Y. Fermentation of pseudocereals quinoa, canihua, and amaranth to improve mineral accessibility through degradation of phytate. J Sci Food Agric. 2019;99(11):5239– 5248. https://doi.org/10.1002/jsfa.9793
  9. Cheung HN, Huang GH, Yu H. Microbial-growth inhibition during composting of food waste: Effects of organic acids. Bioresour Technol. 2010;101(15):5925–5934. https://doi.org/10.1016/j. biortech.2010.02.062
  10. De Corato U. Agricultural waste recycling in horticultural intensive farming systems by on-farm composting and compost-based tea application improves soil quality and plant health: A review under the perspective of a circular economy. Sci Total Environ. 2020;738:139840. https://doi.org/10.1016/j.scitotenv.2020.139840
  11. Díaz-Valderrama JR, Nguyen HDT, Aime MC. Wallemia peruviensis sp. nov., a new xerophilic fungus from an agricultural setting in South America. Extremophiles. 2017;21(6):1017–1025. https://doi.org/10.1007/s00792-017-0960-0
  12. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–2461. https://doi. org/10.1093/bioinformatics/btq461
  13. Fracchia L, Dohrmann AB, Martinotti MG, Tebbe CC. Bacterial diversity in a finished compost and vermicompost: Differences revealed by cultivation-independent analyses of PCR-amplified 16S rRNA genes. Appl Microbiol Biotechnol. 2006;71(6):942–952. https://doi.org/10.1007/s00253-005-0228-y
  14. Hartl J, Kiefer P, Meyer F, Vorholt JA. Longevity of major coenzymes allows minimal de novo synthesis in microorganisms. Nat Microbiol. 2017;2:17073. https://doi.org/10.1038/nmicrobiol.2017.73
  15. Hoang HG, Thuy BTP, Lin C, Vo DN, Tran HT, Bahari MB, Le VG, Vu CT. The nitrogen cycle and mitigation strategies for nitrogen loss during organic waste composting: A review. Chemosphere. 2022;300:134514. https://doi.org/10.1016/j.chemosphere.2022.134514
  16. Jančič S, Zalar P, Kocev D, Schroers HJ, Džeroski S, Gunde-Cimerman N. Halophily reloaded: New insights into the extremophilic life-style of Wallemia with the description of Wallemia hederae sp. nov. Fungal Diversity 2016;76;97–118. https://doi.org/10.1007/s13225-015-0333-x
  17. Janczak D, Malińska K, Czekała W, Cáceres R, Lewicki A, Dach J. Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw. Waste Manag. 2017;66:36–45. https://doi.org/10.1016/j.wasman.2017.04.033
  18. Kanehisa M, Furumichi M, Sato Y, Matsuura Y, Ishiguro-Watanabe M. KEGG: Biological systems database as a model of the real world. Nucleic Acids Res. 2025 Jan;53(D1):D672–D677. https://doi.org/10.1093/nar/gkae909
  19. Khleborodova A, Gamboa-Tuz SD, Ramos M, Segata N, Waldron L, Oh S. lefser: Implementation of metagenomic biomarker discovery tool, LEfSe, in R. Bioinformatics. 2024 Nov;40(12):b-tae707. https://doi.org/10.1093/bioinformatics/btae707
  20. Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D, Knight R. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2011;13(1):47–58. https://doi.org/10.1038/nrg3129
  21. Leconte MC, Mazzarino MJ, Satti P, Crego MP. Nitrogen and phosphorus release from poultry manure composts: The role of carbonaceous bulking agents and compost particle sizes. Biol Fertil Soils. 2011;47:897–906. https://doi.org/10.1007/s00374-011-0591-z
  22. Li X, Li Y, Wu T, Qu C, Ning P, Shi J, Tian X. Potassium fertilization combined with crop straw incorporation alters soil potassium fractions and availability in northwest China: An incubation study. PLoS One. 2020;15(7):e0236634. https://doi.org/10.1371/journal. pone.0236634
  23. Liaw A, Wiener M. Classification and Regression by randomForest. R News. 2002;2(3):18–22 [cited 2025 May 05]. Available from https://CRAN.R-project.org/doc/Rnews
  24. Liu N, Zhou J, Han L, Huang G. Characterization of lignocellulosic compositions’ degradation during chicken manure composting with added biochar by phospholipid fatty acid (PLFA) and correlation analysis. Sci Total Environ. 2017;586:1003–1011. https://doi. org/10.1016/j.scitotenv.2017.02.081
  25. Luo Y, Shen J, Wang X, Xiao H, Yaser AZ, Fu J. Recent advances in research on microbial community in the composting process. Biomass Conv. Bioref. 2024;14:23319–23333. https://doi.org/10.1007/s13399-023-04616-9
  26. Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011 Nov 1;27(21):2957–2963. https://doi.org/10.1093/bioinformatics/btr507
  27. Manea EE, Bumbac C. Sludge composting – Is this a viable solution for wastewater sludge management? Water. 2024;16(16):2241. https://doi.org/10.3390/w16162241
  28. Masunga RH, Uzokwe VN, Mlay PD, Odeh I, Singh A, Buchan D, De Neve S. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl Soil Ecol. 2016;101;185–193. https://doi.org/10.1016/j.apsoil.2016.01.006
  29. Nakasaki K, Araya S, Mimoto H. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting. Bioresour Technol. 2013;144:521–528. https://doi.org/10.1016/j.biortech.2013.07.005
  30. Nakasaki K, Hirai H, Mimoto H, Quyen TNM, Koyama M, Takeda K. Succession of microbial community during vigorous organic matter degradation in the primary fermentation stage of food waste composting. Sci Total Environ. 2019;671;1237–1244. https://doi. org/10.1016/j.scitotenv.2019.03.341
  31. Partanen P, Hultman J, Paulin L, Auvinen P, Romantschuk M. Bacterial diversity at different stages of the composting process. BMC Microbiol. 2010;10:94. https://doi.org/10.1186/1471-2180- 10-94
  32. Paterson RRM, Lima N. Filamentous fungal human pathogens from food emphasising Aspergillus, Fusarium and Mucor. Microorganisms. 2017;5(3):44. https://doi.org/10.3390/microorganisms5030044
  33. Peng SL, Ge ZW, Liu GC, Mao LF. Environmental drivers of soil microbial activity and diversity along an elevational gradient. J Mt Sci. 2022;19:1336–1347. https://doi.org/10.1007/s11629-021- 7083-x
  34. Pitt JI, Hocking AD. Fungi and food spoilage. New York (USA): Springer; 1987.
  35. Pollo SM, Zhaxybayeva O, Nesbø CL. Insights into thermoadaptation and the evolution of mesophily from the bacterial phylum Thermotogae. Can J Microbiol. 2015;61(9):655–670. https://doi. org/10.1139/cjm-2015-0073
  36. Qiao C, Penton CR, Liu C, Tao C, Deng X, Ou Y, Liu H, Li R. Patterns of fungal community succession triggered by C/N ratios during composting. J Hazard Mater. 2021;401:123344. https://doi. org/10.1016/j.jhazmat.2020.123344
  37. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013 Jan;41(Database_issue):D590–D596. https://doi. org/10.1093/nar/gks1219
  38. Rastogi M, Nandal M, Khosla B. Microbes as vital additives for solid waste composting. Heliyon. 2020;6(2):e03343. https://doi. org/10.1016/j.heliyon.2020.e03343
  39. Rosolem CA, Calonego JC, Foloni JSS. Potassium leaching from millet straw as affected by rainfall and potassium rates. Commun Soil Sci Plant Anal. 2005;36(7–8);1063–1074. https://doi. org/10.1081/css-200050497
  40. Sathiyapriya, S, Prabhaharan J, Sheeba S, Anandham R, Ilamaran M. Nutrient recycling through composting: Harnessing agricultural wastes for sustainable crop production. Plant Sci Today. 2024;11(sp4):01–13. https://doi.org/10.14719/pst.5627
  41. Schloss PD, Hay AG, Wilson DB, Gossett JM, Walker LP. Quantifying bacterial population dynamics in compost using 16S rRNA gene probes. Appl Microbiol Biotechnol. 2005;66(4):457–463. https://doi.org/10.1007/s00253-004-1727-y
  42. Wang G, Du Y, Ma X, Ye F, Qin Y, Wang Y, Xiang Y, Tao R, Chen T. Thermophilic nucleic acid polymerases and their application in xenobiology. Int J Mol Sci. 2022;23(23):14969. https://doi. org/10.3390/ijms232314969
  43. Wang K, Mao H, Wang Z, Tian Y. Succession of organics metabolic function of bacterial community in swine manure composting. J Hazard Mater. 2018;360:471–480. https://doi.org/10.1016/j. jhazmat.2018.08.032
  44. Wei Y, Wu D, Wei D, Zhao Y, Wu J, Xie X, Zhang R, Wei Z. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities. Bioresour Technol. 2019;271:66–74. https://doi.org/10.1016/j.biortech.2018.09.081
  45. Wickham H. ggplot2: Elegant graphics for data analysis. New York (USA): Springer-Verlag; 2016.
  46. Wu J, Wei Z, Zhu Z, Zhao Y, Jia L, Lv P. Humus formation driven by ammonia-oxidizing bacteria during mixed materials composting. Bioresour Technol. 2020 Sep;311:123500. https://doi.org/10.1016/j. biortech.2020.123500
  47. Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W, Han L. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 2014;7(9):2934–2938. https://doi.org/10.1039/c4ee01624f
  48. Xiong J, Ma S, He X, Han L, Huang G. Nitrogen transformation and dynamic changes in related functional genes during functional-membrane covered aerobic composting. Bioresour Technol. 2021;332:125087. https://doi.org/10.1016/j.biortech.2021.125087
  49. Xiong J, Zhuo Q, Su Y, Qu H, He X, Han L, Huang G. Nitrogen evolution during membrane-covered aerobic composting: Interconversion between nitrogen forms and migration pathways. J Environ Manage. 2023;345:118727. https://doi.org/10.1016/j.jenvman.2023.118727
  50. Xu M, Yang M, Sun H, Meng J, Li Y, Gao M, Wang Q, Wu C. Role of multistage inoculation on the co-composting of food waste and biogas residue. Bioresour Technol. 2022;361:127681. https://doi. org/10.1016/j.biortech.2022.127681
  51. Yang L, Jie G, She-Qi Z, Long-Xiang S, Wei S, Xun Q, Man-Li D, Ya-Nan Y, Xiao-Juan W. Effects of adding compound microbial inoculum on microbial community diversity and enzymatic activity during co-composting. Environ Eng Sci. 2018;35(4):270–278. https://doi.org/10.1089/ees.2016.0423
  52. Yaser AZ, Sarjadi MS, Lamaming J. Cellulose: Development, processing, and applications. Boca Raton (USA): CRC Press; 2024. https://doi.org/10.1201/9781003358084
  53. Yin Y, Yang C, Tang J, Gu J, Li H, Duan M, Wang X, Chen R. Bamboo charcoal enhances cellulase and urease activities during chicken manure composting: Roles of the bacterial community and metabolic functions. J Environ Sci. 2021;108:84–95. https://doi. org/10.1016/j.jes.2021.02.007
  54. Zajc J, Gunde-Cimerman N. The genus Wallemia-from contamination of food to health threat. Microorganisms. 2018;6(2):46. https://doi.org/10.3390/microorganisms6020046
  55. Zalar P, Sybren de Hoog G, Schroers HJ, Frank JM, Gunde-Cimerman N. Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek. 2005;87(4):311–328. https://doi.org/10.1007/s10482-004-6783-x
  56. Zhang J, Fan B, Zhao L, Zhao C, Yang F. Biochar promotes compost humification by regulating bacterial and fungal communities. Front Microbiol. 2024;15:1470930. https://doi.org/10.3389/fmicb.2024.1470930
  57. Zhu L, Huang C, Li L, Wang S, Wu X, Shan G, Tian Y. Innovative insights into organic nitrogen degradation through protein family domains analysis in chicken and pig manure composting using metagenomic sequencing. Bioresour Technol. 2024;406:131048. https://doi.org/10.1016/j.biortech.2024.131048
  58. Zucconi F, Pera A, Forte M, Bertoldi MD. Evaluating toxicity of immature compost. Biocycle, 1981;22:54–57.
DOI: https://doi.org/10.33073/pjm-2025-030 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 347 - 362
Submitted on: Jun 4, 2025
Accepted on: Aug 6, 2025
Published on: Sep 16, 2025
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 RONGJIAO WANG, PO PU, DAN HUANG, XUANYAN DU, RUI XIANG, GUIZHEN LI, LATIE JIAKA, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.