Have a personal or library account? Click to login
Isolation, Molecular, and Metabolic Profiling of Benzene-Remediating Bacteria Inhabiting the Tannery Industry Soil Cover

Isolation, Molecular, and Metabolic Profiling of Benzene-Remediating Bacteria Inhabiting the Tannery Industry Soil

Open Access
|Mar 2025

References

  1. Abu Laban N, Selesi D, Jobelius C, Meckenstock RU. Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria. FEMS Microbiol Ecol. 2009 Jun;68(3):300–311. https://doi.org/10.1111/j.1574-6941.2009.00672.x
  2. Aktaş N, Şahiner N, Kantoğlu Ö, Salih B, Tanyolaç A. Biosynthesis and characterization of laccase catalyzed poly(catechol). J Polym Environ. 2003 Jul;11:123–128. https://doi.org/10.1023/A:1024639231900
  3. Alviz-Gazitua P, Durán RE, Millacura FA, Cárdenas F, Rojas LA, Seeger M. Cupriavidus metallidurans CH34 possesses aromatic catabolic versatility and degrades benzene in the presence of mercury and cadmium. Microorganisms. 2022 Feb;10(2):484. https://doi.org/10.3390/microorganisms10020484
  4. Anantharaj S, Nithiyanantham U, Ede SR, Ayyappan E, Kundu S. π-stacking intercalation and reductant assisted stabilization of osmium organosol for catalysis and SERS applications. RSC Adv. 2015;5(16):11850–11860. https://doi.org/10.1039/c4ra15521a
  5. Atashgahi S, Hornung B, van der Waals MJ, da Rocha UN, Hugenholtz F, Nijsse B, Molenaar D, van Spanning R, Stams AJM, Gerritse J, et al. A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways. Sci Rep. 2018 Mar;8(1):4490. https://doi.org/10.1038/s41598-018-22617-x
  6. Baek K, Bae SS, Jung J, Chung D. Complete genome sequence of Marinobacterium aestuarii ST58-10T, a benzene-degrading bacterium isolated from estuarine sediment. Microbiol Resour Announc. 2018 Sep;7(11):e00971-18. https://doi.org/10.1128/mra.00971-18
  7. Bedics A, Táncsics A, Tóth E, Banerjee S, Harkai P, Kovács B, Bóka K, Kriszt B. Microaerobic enrichment of benzene-degrading bacteria and description of Ideonella benzenivorans sp. nov., capable of degrading benzene, toluene and ethylbenzene under microaerobic conditions. Antonie Van Leeuwenhoek. 2022 Sep;115(9):1113–1128. https://doi.org/10.1007/s10482-022-01759-z
  8. Breisch J, Huber LS, Kraiczy P, Hubloher J, Averhoff B. The β-ketoadipate pathway of Acinetobacter baumannii is involved in complement resistance and affects resistance against aromatic antibiotics. Environ Microbiol Rep. 2022 Feb;14(1):170–178. https://doi.org/10.1111/1758-2229.13042
  9. Chakraborty R, Coates JD. Hydroxylation and carboxylation – two crucial steps of anaerobic benzene degradation by Dechloromonas strain RCB. Appl Environ Microbiol. 2005 Sep;71(9):5427–5432. https://doi.org/10.1128/aem.71.9.5427-5432.2005
  10. Chen X, Molenda O, Brown CT, Toth CRA, Guo S, Luo F, Howe J, Nesbø CL, He C, Montabana EA, et al. “Candidatus Nealsonbacteria” are likely biomass recycling ectosymbionts of methanogenic archaea in a stable benzene-degrading enrichment culture. Appl Environ Microbiol. 2023 May;89(5):e0002523. https://doi.org/10.1128/aem.00025-23
  11. Chen Y, Ye W, Zhang Y, Xu Y. High speed BLASTN: An accelerated MegaBLAST search tool. Nucleic Acids Res. 2015 Sep;43(16): 7762–7768. https://doi.org/10.1093/nar/gkv784
  12. Dairawan M, Shetty PJ. The evolution of DNA extraction methods. Am J Biomed Sci Res. 2020;8(1):39–45. https://doi.org/10.34297/ajbsr.2020.08.001234
  13. Domańska M, Hamal K, Jasionowski B, Łomotowski J. Bacteriological contamination detection in water and wastewater samples using OD600. Polish J Environ Stud. 2019;28(6):4503–4509. https://doi.org/10.15244/pjoes/94838
  14. Dong X, Dröge J, von Toerne C, Marozava S, McHardy AC, Meckenstock RU. Reconstructing metabolic pathways of a member of the genus Pelotomaculum suggesting its potential to oxidize benzene to carbon dioxide with direct reduction of sulfate. FEMS Microbiol Ecol. 2017 Mar;93(3):fiw254. https://doi.org/10.1093/femsec/fiw254
  15. Dou J, Ding A, Liu X, Du Y, Deng D, Wang J. Anaerobic benzene biodegradation by a pure bacterial culture of Bacillus cereus under nitrate reducing conditions. J Environ Sci. 2010;22(5):709–715. https://doi.org/10.1016/s1001-0742(09)60167-4
  16. Fahy A, Ball AS, Lethbridge G, Timmis KN, McGenity TJ. Isolation of alkali-tolerant benzene-degrading bacteria from a contaminated aquifer. Lett Appl Microbiol. 2008 Jul;47(1):60–66. https://doi.org/10.1111/j.1472-765X.2008.02386.x
  17. Fong KP, Goh CB, Tan HM. The genes for benzene catabolism in Pseudomonas putida ML2 are flanked by two copies of the insertion element IS1489, forming a class-I-type catabolic transposon, Tn5542. Plasmid. 2000 Mar;43(2):103–110. https://doi.org/10.1006/plas.1999.1442
  18. Hira A, Pacini H, Attafuah-Wadee K, Sikander M, Oruko R, Dinan A. Mitigating tannery pollution in sub-Saharan Africa and south Asia. J Dev Soc. 2022;38(3):360–383. https://doi.org/10.1177/0169796X221104856
  19. Högberg J, Järnberg J. Approaches for the setting of occupational exposure limits (OELs) for carcinogens. Crit Rev Toxicol. 2023 Dec; 53(3):131–167. https://doi.org/10.1080/10408444.2023.2218887
  20. Holmes DE, Risso C, Smith JA, Lovley DR. Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus. Appl Environ Microbiol. 2011 Sep;77(17):5926–5933. https://doi.org/10.1128/aem.05452-11
  21. Irshaid FI, Jacob JH, Al-Suhail Q. Benzene biodegradation by novel strain of Caldibacillus: isolation, characterization and bioremediation potential. Int J Agri Biol. 2024;31(3):227–234.
  22. Irshaid FI, Jacob JH. Isolation and molecular identification of new benzene degrading Lysinibacillus strains from gasoline contaminated soil. Res J Environ Earth Sci. 2016;8(4):34–43. https://doi.org/10.19026/rjees.8.3064
  23. Işinkaralar K, Erdem R. The effect of atmospheric deposition on potassium accumulation in several tree species as a biomonitor. Environ Res Technol. 2022;5(1):94–100. https://doi.org/10.35208/ert.1026602
  24. Jothimani P, Kalaichelvan G, Bhaskaran A, Selvaseelan DA, Ramasamy K. Anaerobic biodegradation of aromatic compounds. Indian J Exp Biol. 2003 Sep;41(9):1046–1067.
  25. Kaur I, Dhiman PK. Synthesis, characterization of cellulose grafted N-oxide reagent and its application in oxidation of alkyl/aryl halides. Int J Org Chem. 2011;1(1):6–14. https://doi.org/10.4236/ijoc.2011.11002
  26. Krishna Y, Saidur R, Aslfattahi N, Faizal M, Ng KC. Enhancing the thermal properties of organic phase change material (palmitic acid) by doping MXene nanoflakes. AIP Conf. Proc. 2020 May; 2233(1):020013. https://doi.org/10.1063/5.0001366
  27. Ladino-Orjuela G, Gomes E, da Silva R, Salt C, Parsons JR. Metabolic pathways for degradation of aromatic hydrocarbons by bacteria. In: de Voogt W, editor. Reviews of Environmental Contamination and Toxicology, vol. 237. Cham (Switzerland): Springer; 2016. p. 105–121. https://doi.org/10.1007/978-3-319-23573-8_5
  28. Lam SS, Liew RK, Cheng CK, Chase HA. Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char. Appl Catal B Environ. 2015;176–177:601–617. https://doi.org/10.1016/j.apcatb.2015.04.014
  29. Lawrence W, Black C, Tinati T, Cradock S, Begum R, Jarman M, Pease A, Margetts B, Davies J, Inskip H, et al. ‘Making every contact count’: Evaluation of the impact of an intervention to train health and social care practitioners in skills to support health behaviour change. J Health Psychol. 2016 Feb;21(2):138–151. https://doi.org/10.1177/1359105314523304
  30. Lazaroaie MM. Adaptative response of Shewanella putrefaciens and Pseudomonas aeruginosa to toxic organic solvents. Biotechnol Biotechnol Equip. 2010;24(1):1592–1599. https://doi.org/10.2478/v10133-010-0011-9
  31. Lăzăroaie MM. Multiple responses of Gram-positive and Gramnegative bacteria to mixture of hydrocarbons. Braz J Microbiol. 2010;41(3):649–667. https://doi.org/10.1590/S1517-83822010000300016
  32. Luo F, Gitiafroz R, Devine CE, Gong Y, Hug LA, Raskin L, Edwards EA. Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation. Appl Environ Microbiol. 2014 Jul;80(14):4095–4107. https://doi.org/10.1128/aem.00717-14
  33. Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Cunha Tarouco P, Weyrauch P, Dong X, Himmelberg AM. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol. 2016;26(1–3):92–118. https://doi.org/10.1159/000441358
  34. Mohammadpour H, Shahriarinour M, Yousefi R. Benzene degradation by free and immobilized Bacillus glycinifermantans strain GO-13T using go sheets. Pol. J. Environ. Stud. 2020;29(4):2783–2793. https://doi.org/10.15244/pjoes/111512
  35. Muccee F, Ejaz S, Riaz N. Toluene degradation via a unique metabolic route in indigenous bacterial species. Arch Microbiol. 2019 Dec;201(10):1369–1383. https://doi.org/10.1007/s00203-019-01705-0
  36. Muccee F, Ejaz S. Whole genome shotgun sequencing of POPs degrading bacterial community dwelling tannery effluents and petrol contaminated soil. Microbiol Res. 2020 Sep;238:126504. https://doi.org/10.1016/j.micres.2020.126504
  37. Mukherjee S, De A, Sarkar NK, Saha NC. Aerobic degradation of benzene by Escherichia spp. from petroleum-contaminated sites in Kolkata, West Bengal, India. J Pure Appl Microbiol. 2019:13(4): 2353–2362 https://doi.org/10.22207/jpam.13.4.51
  38. Muter O. Current trends in bioaugmentation tools for bioremediation: A critical review of advances and knowledge gaps. Microorganisms. 2023 Mar;11(3):710. https://doi.org/10.3390/microorganisms11030710
  39. Na KS, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J. Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng. 2005 Apr;99(4):378–382. https://doi.org/10.1263/jbb.99.378
  40. Nicholson CA, Fathepure BZ. Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol. 2004 Feb;70(2):1222–1225. https://doi.org/10.1128/aem.70.2.1222-1225.2004
  41. Posman KM, DeRito CM, Madsen EL. Benzene degradation by a Variovorax species within a coal tar-contaminated groundwater microbial community. Appl Environ Microbiol. 2017 Feb;83(4): e02658-16. https://doi.org/10.1128/aem.02658-16
  42. Rana I, Dahlberg S, Steinmaus C, Zhang L. Benzene exposure and non-Hodgkin lymphoma: A systematic review and meta-analysis of human studies. Lancet Planet Health. 2021 Sep;5(9):e633–e643. https://doi.org/10.1016/S2542-5196(21)00149-2
  43. Rastogi SK, Pandey A, Tripathi S. Occupational health risks among the workers employed in leather tanneries at Kanpur. Indian J Occup Environ Med. 2008 Dec;12(3):132–135. https://doi.org/10.4103/0019-5278.44695
  44. Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, Leipe D, Mcveigh R, O’Neill K, Robbertse B, et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database. 2020 Jan;2020:baaa062. https://doi.org/10.1093/database/baaa062
  45. Shala NK, Stenehjem JS, Babigumira R, Liu FC, Berge LAM, Silverman DT, Friesen MC, Rothman N, Lan Q, Hosgood HD, et al. Exposure to benzene and other hydrocarbons and risk of bladder cancer among male offshore petroleum workers. Br J Cancer. 2023 Sep;129(5):838–851. https://doi.org/10.1038/s41416-023-02357-0
  46. Sievers F, Higgins DG. The Clustal Omega Multiple Alignment Package. In: Katoh K, editor. Multiple sequence alignment. Methods in molecular biology, vol 2231. New York (USA): Humana; 2021. p. 3–16. https://doi.org/10.1007/978-1-0716-1036-7_1
  47. Smith BC. Alcohols – the rest of the story. Spectrosc. 2017;32(4): 19–23.
  48. Smith BC. The C=O bond, part III: Carboxylic acids. Spectrosc. 2018a;33(1):14-20.
  49. Smith BC. The carbonyl group, part V: Carboxylates – coming clean. Spectrosc. 2018b;33(5):20–23.
  50. Srivastava A, Valsala R, Jagadevan S. Biogeochemical modelling to assess benzene removal by biostimulation in aquifers containing natural reductants. Environ Sci Pollut Res Int. 2023 Aug;30(37): 88022–88035. https://doi.org/10.1007/s11356-023-28506-9
  51. Sun Y, Yue G, Ma J. Transport and natural attenuation of benzene vapor from a point source in the vadose zone. Chemosphere. 2023 May;323:138222. https://doi.org/10.1016/j.chemosphere.2023.138222
  52. Syman K, Saleh ZM, Hasoon A, Dawood FA, Awfi ZS, Khaleel LA, Nazym B, Bakytbekovich ON, Masalov AE. Evaluation of air pollutants caused by benzene, toluene, and xylene at Kazakhstan Petrochemical Industries Inc. LLP in 2022. J Chem Health Risks. 2023;13(4):753–760. https://doi.org/10.22034/jchr.2023.1982545.1710
  53. Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol. 2021 Jun;38(7): 3022–3027. https://doi.org/10.1093/molbev/msab120
  54. Tao Y, Fishman A, Bentley WE, Wood TK. Oxidation of benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by toluene 4-monooxygenase of Pseudomonas mendocina KR1 and toluene 3-monooxygenase of Ralstonia pickettii PKO1. Appl Environ Microbiol. 2004 Jul;70(7):3814–3820. https://doi.org/10.1128/aem.70.7.3814-3820.2004
  55. Tayyeb SR, Kazemipour N, Hassanshahian M, Rokhbakhsh-Zamin F, Khoshroo SMR. Assessment of biostimulation and bioaugmentation on crude oil-polluted sediments microbial community of Persian Gulf: A microcosm simulation study. Geomicrobiol J. 2024; 41(1):98–108. https://doi.org/10.1080/01490451.2023.2285317
  56. Varjani SJ, Gnansounou E, Pandey A. Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere. 2017 Dec;188:280–91. https://doi.org/10.1016/j.chemosphere.2017.09.005
  57. Varma SS, Lakshmi MB, Velan M. Isolation and characterization of non-adapted BTEX degrading bacterial strains from petroleum contaminated environment. J Pure Appl Microbiol. 2015; 9(4): 3161–3170.
  58. Wan W, Peters S, Portengen L, Olsson A, Schüz J, Ahrens W, Schejbalova M, Boffetta P, Behrens T, Brüning T, et al. Occupational benzene exposure and lung cancer risk: A pooled analysis of 14 case-control studies. Am J Respir Crit Care Med. 2024 Jan; 209(2):185–196. https://doi.org/10.1164/rccm.202306-0942oc
  59. Wang J, Ma Y, Tang L, Li D, Xie J, Sun Y, Tian Y. Long-term exposure to low concentrations of ambient benzene and mortality in a national English cohort. Am J Respir Crit Care Med. 2024a Apr; 209(8):987–994. https://doi.org/10.1164/rccm.202308-1440oc
  60. Wang T, Cao Y, Xia Z, Christiani DC, Au WW. Review on novel toxicological effects and personalized health hazard in workers exposed to low doses of benzene. Arch Toxicol. 2024b Feb;98(2): 365–374. https://doi.org/10.1007/s00204-023-03650-w
  61. >Xie S, Sun W, Luo C, Cupples AM. Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing. Biodegradation. 2011 Feb;22(1):71–81. https://doi.org/10.1007/s10532-010-9377-5
  62. Zehnle H, Otersen C, Benito Merino D, Wegener G. Potential for the anaerobic oxidation of benzene and naphthalene in thermophilic microorganisms from the Guaymas Basin. Front Microbiol. 2023 Sep;14:1279865. https://doi.org/10.3389/fmicb.2023.1279865
  63. Zhang R, Ye Z, Guo X, Yang Y, Li G. Microbial diversity and metabolic pathways linked to benzene degradation in petrochemical – polluted groundwater. Environ Int. 2024 Jun;188:108755. https://doi.org/10.1016/j.envint.2024.108755
  64. Zhang T, Tremblay PL, Chaurasia AK, Smith JA, Bain TS, Lovley DR. Anaerobic benzene oxidation via phenol in Geobacter metallireducens. Appl Environ Microbiol. 2013 Dec;79(24):7800–7806. https://doi.org/10.1128/aem.03134-13
  65. Zhang T, Tremblay PL, Chaurasia AK, Smith JA, Bain TS, Lovley DR. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens. Front Microbiol. 2014 May;5:245. https://doi.org/10.3389/fmicb.2014.00245
  66. Zhu T, Li J, Jin YQ, Liang YH, Ma GD. Gaseous phase benzene decomposition by non-thermal plasma coupled with nano titania catalyst. Int J Environ Sci Technol. 2009;6:141–148. https://doi.org/10.1007/bf03326068
DOI: https://doi.org/10.33073/pjm-2025-003 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 33 - 47
Submitted on: Oct 20, 2024
Accepted on: Dec 27, 2024
Published on: Mar 26, 2025
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Nadia Hussain, Farhan Mohiuddin, Fatima Muccee, Saboor Muarij Bunny, Amal H.I. Al Haddad, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.