References
- Allison SD, Martiny JB. Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci USA. 2008 Aug; 105 (Suppl_1):11512–11519. https://doi.org/10.1073/pnas.0801925105
- Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019 Aug;37(8):852–857. https://doi.org/10.1038/s41587-019-0209-9
- Botta LS, Delforno TP, Rabelo CABS, Silva EL, Varesche MBA. Microbial community analyses by high-throughput sequencing of rumen microorganisms fermenting office paper in mesophilic and thermophilic lysimeters. Process Saf Environ Prot. 2020 Apr; 136:182–193. https://doi.org/10.1016/j.psep.2020.01.030
- Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016 Jul;13(7):581–583. https://doi.org/10.1038/nmeth.3869
- Chai J, Wang LQ. Analysis and design of interruptible gas contract in China under energy market reform. Sustainability. 2020 Jan;12(2):506. https://doi.org/10.3390/su12020506
- Chew KJ. The future of oil: Unconventional fossil fuels. Philos. Trans. R. Soc. A. 2014 Jan;372(2006):20120324. https://doi.org/10.1098/rsta.2012.0324
- Chua RW, Song KP, Ting ASY. Comparative analysis of antimicrobial compounds from endophytic Buergenerula spartinae from orchid. Antonie van Leeuwenhoek. 2023 Oct;116(10):1057–1072. https://doi.org/10.1007/s10482-023-01870-9
- Fakoussa RM, Hofrichter M. Biotechnology and microbiology of coal degradation. Appl Microbiol Biotechnol. 1999 Jul;52(1):25–40. https://doi.org/10.1007/s002530051483
- Feng L, Wang Y, Yang J, Sun YF, Li YW, Ye ZH, Lin HB, Yang K. Overview of the preparation method, structure and function, and application of natural peptides and polypeptides. Biomed Pharma-cother. 2022 Sep;153:113493. https://doi.org/10.1016/j.biopha.2022.113493
- Ferraz Júnior ADN, Etchebehere C, Zaiat M. High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery. Bioresour Technol. 2015 Jun;186:81–88. https://doi.org/10.1016/j.biortech.2015.03.035
- FitzGerald JA, Wall DM, Jackson SA, Murphy JD, Dobson ADW. Trace element supplementation is associated with increases in fermenting bacteria in biogas mono-digestion of grass silage. Renewable Energy. 2019 Aug;138:980–986. https://doi.org/10.1016/j.renene.2019.02.051
- Fosses A, Maté M, Franche N, Liu N, Denis Y, Borne R, de Philip P, Fierobe HP, Perret S. A seven-gene cluster in Ruminiclostridium cellulolyticum is essential for signalization, uptake and catabolism of the degradation products of cellulose hydrolysis. Biotechnol Biofuels. 2017 Oct;10:250. https://doi.org/10.1186/s13068-017-0933-7
- Gao J, Zhang Y, Meng D, Jiao T, Qin X, Bai G, Liang P. Effect of ash and dolomite on the migration of sulfur from coal pyrolysis volatiles. J Anal Appl Pyrolysis. 2019 Jun;140:349–354. https://doi.org/10.1016/j.jaap.2019.04.013
- Guo H, Yu Z, Zhang H. Phylogenetic diversity of microbial communities associated with coalbed methane gas from Eastern Ordos Basin, China. Int J Coal Geol. 2015 Oct;150–151:120–126. https://doi.org/10.1016/j.coal.2015.08.012
- Gutekunst CN, Liebner S, Jenner AK, Knorr KH, Unger V, Koebsch F, Racasa ED, Yang SZ, Böttcher ME, Janssen M, et al. Effects of brackish water inflow on methane-cycling microbial communities in a freshwater rewetted coastal fen. Biogeosciences. 2022 Aug; 19(15):3625–3648. https://doi.org/10.5194/bg-19-3625-2022
- Hierholtzer A, Akunna JC. Modelling sodium inhibition on the anaerobic digestion process. Water Sci Technol. 2012;66(7):1565–1573. https://doi.org/10.2166/wst.2012.345
- Hong H, Kim SJ, Min UG, Lee YJ, Kim SG, Roh SW, Kim JG, Na JG, Rhee SK. Anaerosolibacter carboniphilus gen. nov., sp. nov., a strictly anaerobic iron-reducing bacterium isolated from coal-contaminated soil. Int J Syst Evol Microbiol. 2015 May;65(Pt 5): 1480–1485. https://doi.org/10.1099/ijs.0.000124
- Huang S, Wu S, Wu Y, Gao J. Physicochemical properties and gasification reactivity of chars from different carbonization processes. Energy Sources Part A. 2014;36(14):1588–1595. https://doi.org/10.1080/15567036.2011.613893
- Huang ZX, Urynowicz MA, Colberg PJS. Stimulation of biogenic methane generation in coal samples following chemical treatment with potassium permanganate. Fuel. 2013 Sep;111:813–819. https://doi.org/10.1016/j.fuel.2013.03.079
- Ji Y, Yao Q, Cao W, Zhao Y. A probable origin of dibenzothiophenes in coals and oils. Energies. 2021 Jan;14(1):234. https://doi.org/10.3390/en14010234
- Jiang J, Wu P, Sun Y, Guo Y, Song B, Huang Y, Xing T, Li L. Comparison of microbial communities during anaerobic digestion of kitchen waste: Effect of substrate sources and temperatures. Bio-resour Technol. 2020 Dec;317:124016. https://doi.org/10.1016/j.biortech.2020.124016
- Jung H, Kim J, Lee C. Temperature effects on methanogenesis and sulfidogenesis during anaerobic digestion of sulfur-rich macroalgal biomass in sequencing batch reactors. microorganisms. 2019 Dec; 7(12):682. https://doi.org/10.3390/microorganisms7120682
- Kotelnikov VI, Saryglar CA, Chysyma RB. Microorganisms in coal desulfurization (Review). Appl Biochem Microbiol. 2020 Sep; 56(5):521–525. https://doi.org/10.1134/s0003683820050105
- Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D, Knight R. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet. 2011 Dec;13(1):47–58. https://doi.org/10.1038/nrg3129
- Li T, Li J, Zhang H, Sun K, Xiao J. DFT study on the dibenzothiophene pyrolysis mechanism in petroleum. Energy Fuels. 2019 Sep; 33(9):8876–8895. https://doi.org/10.1021/acs.energyfuels.9b01498
- Li Y, Liu B, Tu Q, Xue S, Liu X, Wu Z, An S, Chen J, Wang Z. The ecological roles of assembling genomes for Bacillales and Clostridiales in coal seams. FEMS Microbiol Lett. 2022 Jul;369(1):fnac053. https://doi.org/10.1093/femsle/fnac053
- Liu F, Guo H, Wang Q, Haider R, Urynowicz MA, Fallgren PH, Jin S, Tang M, Chen B, Huang Z. Characterization of organic compounds from hydrogen peroxide-treated subbituminous coal and their composition changes during microbial methanogenesis. Fuel. 2019 Feb;237:1209–1216. https://doi.org/10.1016/j fuel.2018.10.043
- Marañón E, Castrillón L, Quiroga G, Fernández-Nava Y, Gómez L, García MM. Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag. 2012 Oct; 32(10): 1821–1825. https://doi.org/10.1016/j.wasman.2012.05.033
- Meng F, Yu J, Tahmasebi A, Han Y, Zhao H, Lucas J, Wall T. Characteristics of chars from low-temperature pyrolysis of lignite. Energy Fuels. 2014 Jan;28(1):275–284. https://doi.org/10.1021/ef401423s
- Mishra S, Pradhan N, Panda S, Akcil A. Biodegradation of dibenzothiophene and its application in the production of clean coal. Fuel Process Technol. 2016 Nov;152:325–342. https://doi.org/10.1016/j.fuproc.2016.06.025
- Olivera C, Tondo ML, Girardi V, Fattobene L, Herrero MS, Pérez LM, Salvatierra LM. Early-stage response in anaerobic bioreactors due to high sulfate loads: Hydrogen sulfide yield and other organic volatile sulfur compounds as a sign of microbial community modifications. Bioresour Technol. 2022 Apr;350:126947. https://doi.org/10.1016/j.biortech.2022.126947
- Opara A, Adams DJ, Free ML, McLennan J, Hamilton J. Microbial production of methane and carbon dioxide from lignite, bituminous coal, and coal waste materials. Int J Coal Geol. 2012 Jul;96–97:1–8. https://doi.org/10.1016/j.coal.2012.02.010
- Park SY, Liang Y. Biogenic methane production from coal: A review on recent research and development on microbially enhanced coalbed methane (MECBM). Fuel. 2016 Feb;166:258–267. https://doi.org/10.1016/j.fuel.2015.10.121
- Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013 Jan;41(Database issue):D590–D596. https://doi.org/10.1093/nar/gks1219
- R Core Team. A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; 2021 [cited 2024 Mar 07]. Available from https://www.r-project.org
- Rompalski P, Smolinski A, Krzton H, Gazdowicz J, Howaniec N, Róg L. Determination of mercury content in hard coal and fly ash using X-ray diffraction and scanning electron microscopy coupled with chemical analysis. Arabian J Chem. 2019 Dec;12(8):3927–3942. https://doi.org/10.1016/j.arabjc.2016.02.016
- Tikariha H, Purohit HJ. Assembling a genome for novel nitrogenfixing bacteria with capabilities for utilization of aromatic hydrocarbons. Genomics. 2019 Dec;111(6):1824–1830. https://doi.org/10.1016/j.ygeno.2018.12.005
- Vick SHW, Greenfield P, Tran-Dinh N, Tetu SG, Midgley DJ, Paulsen IT. The Coal Seam Microbiome (CSMB) reference set, a lingua franca for the microbial coal-to-methane community. Int J Coal Geol. 2018 Feb;186:41–50. https://doi.org/10.1016/j.coal.2017.12.003
- Wallenstein MD, Hall EK. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry. 2012 Jul;109(1–3):35–47. https://doi.org/10.1007/s10533-011-9641-8
- Wang B, Tai C, Wu L, Chen L, Liu J, Hu B, Song D. Methane production from lignite through the combined effects of exogenous aerobic and anaerobic microflora. Int J Coal Geol. 2017 Mar;173: 84–93. https://doi.org/10.1016/j.coal.2017.02.012
- Wang H, Xu J, Liu X, Sheng L, Zhang D, Li L, Wang A. Study on the pollution status and control measures for the livestock and poultry breeding industry in northeastern China. Environ Sci Pollut Res Int. 2018a Feb;25(5):4435–4445. https://doi.org/10.1007/s11356-017-0751-2
- Wang H, Xu J, Sheng L, Liu X. Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production. Energy. 2018b Dec;165:411–418. https://doi.org/10.1016/j.energy.2018.09.196
- Wang L, Ji G, Huang S. Contribution of the Kodama and 4S pathways to the dibenzothiophene biodegradation in different coastal wetlands under different C/N ratios. J Environ Sci (China). 2019 Feb;76:217–226. https://doi.org/10.1016/j.jes.2018.04.029
- Wang Y, Bao Y, Hu Y. Recent progress in improving the yield of microbially enhanced coalbed methane production. Energy Rep. 2023 Dec;9:2810–2819. https://doi.org/10.1016/j.egyr.2023.01.127
- Xia D, Gu P, Chen Z, Chen L, Wei G, Wang Z, Cheng S, Zhang Y. Control mechanism of microbial degradation on the physical properties of a coal reservoir. Processes. 2023 Apr;11(5):1347. https://doi.org/10.3390/pr11051347
- Zhang J, Bi Z, Liang Y. Development of a nutrient recipe for enhancing methane release from coal in the Illinois basin. Int J Coal Geol. 2018a Feb;187:11–19. https://doi.org/10.1016/j.coal.2018.01.001
- Zhang J, Liang Y, Pandey R, Harpalani S. Characterizing microbial communities dedicated for conversion of coal to methane in situ and ex situ. Int J Coal Geol. 2015 Jul;146:145–154. https://doi.org/10.1016/j.coal.2015.05.001
- Zhang M, Guo H, Xia D, Dong Z, Liu X, Zhao W, Jia J, Yin X. Metagenomic insight of corn straw conditioning on substrates metabolism during coal anaerobic fermentation. Sci Total Environ. 2022 Feb;808:152220. https://doi.org/10.1016/j.scitotenv.2021.152220
- Zhang QQ, Yang GF, Sun KK, Tian GM, Jin RC. Insights into the effects of bio-augmentation on the granule-based anammox process under continuous oxytetracycline stress: Performance and microflora structure. Chem Eng J. 2018b Sep;348:503–513. https://doi.org/10.1016/j.cej.2018.04.204
- Zhou G, Gao S, Chang D, Rees RM, Cao W. Using milk vetch (Astragalus sinicus L.) to promote rice straw decomposition by regulating enzyme activity and bacterial community. Bioresour Technol. 2021 Jan;319:124215. https://doi.org/10.1016/j.biortech.2020.124215