Botta LS, Delforno TP, Rabelo CABS, Silva EL, Varesche MBA. Microbial community analyses by high-throughput sequencing of rumen microorganisms fermenting office paper in mesophilic and thermophilic lysimeters. Process Saf Environ Prot. 2020 Apr; 136:182–193. https://doi.org/10.1016/j.psep.2020.01.030
Chai J, Wang LQ. Analysis and design of interruptible gas contract in China under energy market reform. Sustainability. 2020 Jan;12(2):506. https://doi.org/10.3390/su12020506
Chua RW, Song KP, Ting ASY. Comparative analysis of antimicrobial compounds from endophytic Buergenerula spartinae from orchid. Antonie van Leeuwenhoek. 2023 Oct;116(10):1057–1072. https://doi.org/10.1007/s10482-023-01870-9
Feng L, Wang Y, Yang J, Sun YF, Li YW, Ye ZH, Lin HB, Yang K. Overview of the preparation method, structure and function, and application of natural peptides and polypeptides. Biomed Pharma-cother. 2022 Sep;153:113493. https://doi.org/10.1016/j.biopha.2022.113493
Ferraz Júnior ADN, Etchebehere C, Zaiat M. High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery. Bioresour Technol. 2015 Jun;186:81–88. https://doi.org/10.1016/j.biortech.2015.03.035
FitzGerald JA, Wall DM, Jackson SA, Murphy JD, Dobson ADW. Trace element supplementation is associated with increases in fermenting bacteria in biogas mono-digestion of grass silage. Renewable Energy. 2019 Aug;138:980–986. https://doi.org/10.1016/j.renene.2019.02.051
Fosses A, Maté M, Franche N, Liu N, Denis Y, Borne R, de Philip P, Fierobe HP, Perret S. A seven-gene cluster in Ruminiclostridium cellulolyticum is essential for signalization, uptake and catabolism of the degradation products of cellulose hydrolysis. Biotechnol Biofuels. 2017 Oct;10:250. https://doi.org/10.1186/s13068-017-0933-7
Gao J, Zhang Y, Meng D, Jiao T, Qin X, Bai G, Liang P. Effect of ash and dolomite on the migration of sulfur from coal pyrolysis volatiles. J Anal Appl Pyrolysis. 2019 Jun;140:349–354. https://doi.org/10.1016/j.jaap.2019.04.013
Guo H, Yu Z, Zhang H. Phylogenetic diversity of microbial communities associated with coalbed methane gas from Eastern Ordos Basin, China. Int J Coal Geol. 2015 Oct;150–151:120–126. https://doi.org/10.1016/j.coal.2015.08.012
Hierholtzer A, Akunna JC. Modelling sodium inhibition on the anaerobic digestion process. Water Sci Technol. 2012;66(7):1565–1573. https://doi.org/10.2166/wst.2012.345
Hong H, Kim SJ, Min UG, Lee YJ, Kim SG, Roh SW, Kim JG, Na JG, Rhee SK.Anaerosolibacter carboniphilus gen. nov., sp. nov., a strictly anaerobic iron-reducing bacterium isolated from coal-contaminated soil. Int J Syst Evol Microbiol. 2015 May;65(Pt 5): 1480–1485. https://doi.org/10.1099/ijs.0.000124
Huang S, Wu S, Wu Y, Gao J. Physicochemical properties and gasification reactivity of chars from different carbonization processes. Energy Sources Part A. 2014;36(14):1588–1595. https://doi.org/10.1080/15567036.2011.613893
Huang ZX, Urynowicz MA, Colberg PJS. Stimulation of biogenic methane generation in coal samples following chemical treatment with potassium permanganate. Fuel. 2013 Sep;111:813–819. https://doi.org/10.1016/j.fuel.2013.03.079
Jiang J, Wu P, Sun Y, Guo Y, Song B, Huang Y, Xing T, Li L. Comparison of microbial communities during anaerobic digestion of kitchen waste: Effect of substrate sources and temperatures. Bio-resour Technol. 2020 Dec;317:124016. https://doi.org/10.1016/j.biortech.2020.124016
Jung H, Kim J, Lee C. Temperature effects on methanogenesis and sulfidogenesis during anaerobic digestion of sulfur-rich macroalgal biomass in sequencing batch reactors. microorganisms. 2019 Dec; 7(12):682. https://doi.org/10.3390/microorganisms7120682
Li T, Li J, Zhang H, Sun K, Xiao J. DFT study on the dibenzothiophene pyrolysis mechanism in petroleum. Energy Fuels. 2019 Sep; 33(9):8876–8895. https://doi.org/10.1021/acs.energyfuels.9b01498
Li Y, Liu B, Tu Q, Xue S, Liu X, Wu Z, An S, Chen J, Wang Z. The ecological roles of assembling genomes for Bacillales and Clostridiales in coal seams. FEMS Microbiol Lett. 2022 Jul;369(1):fnac053. https://doi.org/10.1093/femsle/fnac053
Liu F, Guo H, Wang Q, Haider R, Urynowicz MA, Fallgren PH, Jin S, Tang M, Chen B, Huang Z. Characterization of organic compounds from hydrogen peroxide-treated subbituminous coal and their composition changes during microbial methanogenesis. Fuel. 2019 Feb;237:1209–1216. https://doi.org/10.1016/j fuel.2018.10.043
Marañón E, Castrillón L, Quiroga G, Fernández-Nava Y, Gómez L, García MM. Co-digestion of cattle manure with food waste and sludge to increase biogas production. Waste Manag. 2012 Oct; 32(10): 1821–1825. https://doi.org/10.1016/j.wasman.2012.05.033
Meng F, Yu J, Tahmasebi A, Han Y, Zhao H, Lucas J, Wall T. Characteristics of chars from low-temperature pyrolysis of lignite. Energy Fuels. 2014 Jan;28(1):275–284. https://doi.org/10.1021/ef401423s
Mishra S, Pradhan N, Panda S, Akcil A. Biodegradation of dibenzothiophene and its application in the production of clean coal. Fuel Process Technol. 2016 Nov;152:325–342. https://doi.org/10.1016/j.fuproc.2016.06.025
Olivera C, Tondo ML, Girardi V, Fattobene L, Herrero MS, Pérez LM, Salvatierra LM. Early-stage response in anaerobic bioreactors due to high sulfate loads: Hydrogen sulfide yield and other organic volatile sulfur compounds as a sign of microbial community modifications. Bioresour Technol. 2022 Apr;350:126947. https://doi.org/10.1016/j.biortech.2022.126947
Opara A, Adams DJ, Free ML, McLennan J, Hamilton J. Microbial production of methane and carbon dioxide from lignite, bituminous coal, and coal waste materials. Int J Coal Geol. 2012 Jul;96–97:1–8. https://doi.org/10.1016/j.coal.2012.02.010
Park SY, Liang Y. Biogenic methane production from coal: A review on recent research and development on microbially enhanced coalbed methane (MECBM). Fuel. 2016 Feb;166:258–267. https://doi.org/10.1016/j.fuel.2015.10.121
R Core Team. A language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; 2021 [cited 2024 Mar 07]. Available from https://www.r-project.org
Rompalski P, Smolinski A, Krzton H, Gazdowicz J, Howaniec N, Róg L. Determination of mercury content in hard coal and fly ash using X-ray diffraction and scanning electron microscopy coupled with chemical analysis. Arabian J Chem. 2019 Dec;12(8):3927–3942. https://doi.org/10.1016/j.arabjc.2016.02.016
Tikariha H, Purohit HJ. Assembling a genome for novel nitrogenfixing bacteria with capabilities for utilization of aromatic hydrocarbons. Genomics. 2019 Dec;111(6):1824–1830. https://doi.org/10.1016/j.ygeno.2018.12.005
Vick SHW, Greenfield P, Tran-Dinh N, Tetu SG, Midgley DJ, Paulsen IT. The Coal Seam Microbiome (CSMB) reference set, a lingua franca for the microbial coal-to-methane community. Int J Coal Geol. 2018 Feb;186:41–50. https://doi.org/10.1016/j.coal.2017.12.003
Wallenstein MD, Hall EK. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry. 2012 Jul;109(1–3):35–47. https://doi.org/10.1007/s10533-011-9641-8
Wang B, Tai C, Wu L, Chen L, Liu J, Hu B, Song D. Methane production from lignite through the combined effects of exogenous aerobic and anaerobic microflora. Int J Coal Geol. 2017 Mar;173: 84–93. https://doi.org/10.1016/j.coal.2017.02.012
Wang H, Xu J, Liu X, Sheng L, Zhang D, Li L, Wang A. Study on the pollution status and control measures for the livestock and poultry breeding industry in northeastern China. Environ Sci Pollut Res Int. 2018a Feb;25(5):4435–4445. https://doi.org/10.1007/s11356-017-0751-2
Wang H, Xu J, Sheng L, Liu X. Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production. Energy. 2018b Dec;165:411–418. https://doi.org/10.1016/j.energy.2018.09.196
Wang L, Ji G, Huang S. Contribution of the Kodama and 4S pathways to the dibenzothiophene biodegradation in different coastal wetlands under different C/N ratios. J Environ Sci (China). 2019 Feb;76:217–226. https://doi.org/10.1016/j.jes.2018.04.029
Wang Y, Bao Y, Hu Y. Recent progress in improving the yield of microbially enhanced coalbed methane production. Energy Rep. 2023 Dec;9:2810–2819. https://doi.org/10.1016/j.egyr.2023.01.127
Xia D, Gu P, Chen Z, Chen L, Wei G, Wang Z, Cheng S, Zhang Y. Control mechanism of microbial degradation on the physical properties of a coal reservoir. Processes. 2023 Apr;11(5):1347. https://doi.org/10.3390/pr11051347
Zhang J, Bi Z, Liang Y. Development of a nutrient recipe for enhancing methane release from coal in the Illinois basin. Int J Coal Geol. 2018a Feb;187:11–19. https://doi.org/10.1016/j.coal.2018.01.001
Zhang J, Liang Y, Pandey R, Harpalani S. Characterizing microbial communities dedicated for conversion of coal to methane in situ and ex situ. Int J Coal Geol. 2015 Jul;146:145–154. https://doi.org/10.1016/j.coal.2015.05.001
Zhang QQ, Yang GF, Sun KK, Tian GM, Jin RC. Insights into the effects of bio-augmentation on the granule-based anammox process under continuous oxytetracycline stress: Performance and microflora structure. Chem Eng J. 2018b Sep;348:503–513. https://doi.org/10.1016/j.cej.2018.04.204
Zhou G, Gao S, Chang D, Rees RM, Cao W. Using milk vetch (Astragalus sinicus L.) to promote rice straw decomposition by regulating enzyme activity and bacterial community. Bioresour Technol. 2021 Jan;319:124215. https://doi.org/10.1016/j.biortech.2020.124215