Have a personal or library account? Click to login
Halogenated Secondary Metabolites from Higher Plants: Potent Drug Candidates for Chikungunya Using in silico Approaches Cover

Halogenated Secondary Metabolites from Higher Plants: Potent Drug Candidates for Chikungunya Using in silico Approaches

Open Access
|Jun 2024

References

  1. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys. 1984;81(8):3684–3690. https://doi.org/10.1063/1.448118
  2. Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. In: Hempel J, Williams C, Hong C, editors. Chemical Biology. Methods in Molecular Biology, vol 1263. New York (USA): Humana Press; 2015. p. 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  3. de Lima Cavalcanti TYV, Pereira MR, de Paula SO, Franca RFO. A Review on Chikungunya virus epidemiology, pathogenesis and current vaccine development. Viruses. 2022;14(5):969. https://doi.org/10.3390/v14050969
  4. Ejaz H, Junaid K, Younas S, Abdalla AE, Bukhari SNA, Abosalif KOA, Ahmad N, Ahmed Z, Hamza MA, Anwar N. Emergence and dissemination of monkeypox, an intimidating global public health problem. J Infect Public Health. 2022;15(10):1156–1165. https://doi.org/10.1016/j.jiph.2022.09.008
  5. Ganesan VK, Duan B, Reid SP. Chikungunya virus: Pathophysiology, mechanism, and modeling. Viruses. 2017;9(12):368. https://doi.org/10.3390/v9120368
  6. Gribble GW. A recent survey of naturally occurring organohalogen compounds. Environ Chem. 2015;12(4):396–405. https://doi.org/10.1071/EN15002
  7. Guex N, Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis. 1997;18(15):2714–2723. https://doi.org/10.1002/elps.1150181505
  8. Hess B, Bekker H, Berendsen HJC, Fraaije J. LINCS: A linear constraint solver for molecular simulations. J Comput Chem. 1997;18(12):1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<;1463::AID-JCC4>3.0.CO;2-H
  9. Hess B. P-LINCS: A parallel linear constraint solver for molecular simulation. J Chem Theory Comput. 2008;4(1):116–122. https://doi.org/10.1021/ct700200b
  10. Hsu JT, Wang HC, Chen GW, Shih SR. Antiviral drug discovery targeting to viral proteases. Curr Pharm Des. 2006;12(11):1301–1314. https://doi.org/10.2174/138161206776361110
  11. Huang YS, Higgs S, Vanlandingham DL. Emergence and re-emergence of mosquito-borne arboviruses. Curr Opin Virol. 2019;34:104–109. https://doi.org/10.1016/j.coviro.2019.01.001
  12. Imad HA, Phadungsombat J, Nakayama EE, Suzuki K, Ibrahim AM, Afaa A, Azeema A, Nazfa A, Yazfa A, Ahmed A, et al. Clinical features of acute Chikungunya virus infection in children and adults during an outbreak in the Maldives. Am J Trop Med Hyg. 2021;105(4):946–954. https://doi.org/10.4269/ajtmh.21-0189
  13. Jadav SS, Sinha BN, Hilgenfeld R, Jayaprakash V. Computer-aided structure based drug design approaches for the discovery of new anti-CHIKV agents. Curr Comput Aided Drug Des. 2017;13(4):346–361. https://doi.org/10.2174/1573409913666170309145308
  14. Jain J, Kumari A, Somvanshi P, Grover A, Pai S, Sunil S. In silico analysis of natural compounds targeting structural and nonstructural proteins of Chikungunya virus. F1000Res. 2017;6:1601. https://doi.org/10.12688/f1000research.12301.2
  15. Jain M, Rai S, Chakravarti A. Chikungunya: A review. Trop Doct. 2008;38(2):70–72. https://doi.org/10.1258/td.2007.070019
  16. Jensen S, Hansen J, Boll PM. Lignans and neolignans from Piper-aceae. Phytochem. 1993;33(3):523–530. https://doi.org/10.1016/0031-9422(93)85442-T
  17. Kasabe B, Ahire G, Patil P, Punekar M, Davuluri KS, Kakade M, Alagarasu K, Parashar D, Cherian S. Drug repurposing approach against chikungunya virus: An in vitro and in silico study. Front Cell Infect Microbiol. 2023;13:1132538. https://doi.org/10.3389/fcimb.2023.1132538
  18. Kumar P, Kumar D, Giri R. Targeting the nsp2 cysteine protease of Chikungunya virus using FDA approved library and selected cysteine protease inhibitors. Pathogens. 2019;8(3):128. https://doi.org/10.3390/pathogens8030128
  19. Kumari R, Kumar R; Open Source Drug Discovery Consortium; Lynn A. g_mmpbsa – A GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54(7):1951–1962. https://doi.org/10.1021/ci500020m
  20. Lamarre D, Anderson PC, Bailey M, Beaulieu P, Bolger G, Bonneau P, Bös M, Cameron DR, Cartier M, Cordingley MG, et al. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature. 2003;426(6963):186–189. https://doi.org/10.1038/nature02099
  21. Law YS, Utt A, Tan YB, Zheng J, Wang S, Chen MW, Griffin PR, Merits A, Luo D. Structural insights into RNA recognition by the Chikungunya virus nsP2 helicase. Proc Natl Acad Sci USA. 2019;116(19):9558–9567. https://doi.org/10.1073/pnas.1900656116
  22. Law YS, Wang S, Tan YB, Shih O, Utt A, Goh WY, Lian BJ, Chen MW, Jeng US, Merits A, et al. Interdomain flexibility of Chikungunya virus nsP2 helicase-protease differentially influences viral RNA replication and infectivity. J Virol. 2021;95(6):e01470-20. https://doi.org/10.1128/JVI.01470-20
  23. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1–3):3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
  24. Lucas-Hourani M, Lupan A, Desprès P, Thoret S, Pamlard O, Dubois J, Guillou C, Tangy F, Vidalain PO, Munier-Lehmann H. A phenotypic assay to identify Chikungunya virus inhibitors targeting the nonstructural protein nsP2. J Biomol Screen. 2013;18(2):172–179. https://doi.org/10.1177/1087057112460091
  25. Mishra P, Kumar A, Mamidi P, Kumar S, Basantray I, Saswat T, Das I, Nayak TK, Chattopadhyay S, Subudhi BB, et al. Inhibition of Chikungunya virus replication by 1-[(2-methylbenzimidazol-1-yl) methyl]-2-oxo-indolin-3-ylidene] amino] thiourea(MBZM-N-IBT). Sci Rep. 2016;6:20122. https://doi.org/10.1038/srep20122
  26. Musili FM. Vector competence of Aedes simpsoni bromeliae and Aedes vittatus populations from Kilifi and West Pokot, Kenya for Chikungunya virus [Master Thesis]. Juja (Kenya): Jomo Kenyatta University of Agriculture and Technology; 2021.
  27. Narwal M, Singh H, Pratap S, Malik A, Kuhn RJ, Kumar P, Tomar S. Crystal structure of Chikungunya virus nsP2 cysteine protease reveals a putative flexible loop blocking its active site. Int J Biol Macromol. 2018;116:451–462. https://doi.org/10.1016/j.ijbiomac.2018.05.007
  28. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J Cheminform. 2011;3:33. https://doi.org/10.1186/1758-2946-3-33
  29. Parmar VS, Jain SC, Bisht KS, Jain R, Taneja P, Jha A, Tyagi OD, Prasad AK, Wengel J, Olsen CE, et al. Phytochemistry of the genus Piper. Phytochem. 1997;46(4):597–673. https://doi.org/10.1016/S0031-9422(97)00328-2
  30. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera – A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612. https://doi.org/10.1002/jcc.20084
  31. Phadungsombat J, Imad H, Rahman M, Nakayama EE, Kludkleeb S, Ponam T, Rahim R, Hasan A, Poltep K, Yamanaka A, et al. A novel sub-lineage of Chikungunya virus East/Central/South African genotype Indian Ocean Lineage caused sequential outbreaks in Bangladesh and Thailand. Viruses. 2020;12(11):1319. https://doi.org/10.3390/v12111319
  32. Pialoux G, Gaüzère BA, Jauréguiberry S, Strobel M. Chikungunya, an epidemic arbovirosis. Lancet Infect Dis. 2007;7(5):319–327. https://doi.org/10.1016/s1473-3099(07)70107-x
  33. Puranik NV, Rani R, Singh VA, Tomar S, Puntambekar HM, Srivastava P. Evaluation of the antiviral potential of halogenated dihydrorugosaflavonoids and molecular modeling with nsP3 protein of Chikungunya virus (CHIKV). ACS Omega. 2019;4(23):20335–20345. https://doi.org/10.1021/acsomega.9b02900
  34. Schrödinger L, DeLano W. PyMOL [Internet]. New York (USA): Schrödinger, Inc.; 2020. [cited 2023 Dec 04]. Available from http://www.pymol.org/pymol
  35. Schüttelkopf AW, van Aalten DM. PRODRG: A tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D Biol Crystallogr. 2004;60(Pt 8):1355–1363. https://doi.org/10.1107/S0907444904011679
  36. Sharma R, Fatma B, Saha A, Bajpai S, Sistla S, Dash PK, Parida M, Kumar P, Tomar S. Inhibition of Chikungunya virus by picolinate that targets viral capsid protein. Virology. 2016;498:265–276. https://doi.org/10.1016/j.virol.2016.08.029
  37. Simon F, Javelle E, Oliver M, Leparc-Goffart I, Marimoutou C. Chikungunya virus infection. Curr Infect Dis Rep. 2011;13(3):218–228. https://doi.org/10.1007/s11908-011-0180-1
  38. Singh H, Mudgal R, Narwal M, Kaur R, Singh VA, Malik A, Chaudhary M, Tomar S. Chikungunya virus inhibition by peptidomimetic inhibitors targeting virus-specific cysteine protease. Biochimie. 2018;149:51–61. https://doi.org/10.1016/j.biochi.2018.04.004
  39. Strauss JH, Strauss EG. The alphaviruses: Gene expression, replication, and evolution. Microbiol Rev. 1994;58(3):491–562. https://doi.org/10.1128/mr.58.3.491-562.1994
  40. Translational Research Consortia (TRC) for Chikungunya Virus in India. Current status of chikungunya in India. Front Microbiol;12:695173. https://doi.org/10.3389/fmicb.2021.695173
  41. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–461. https://doi.org/10.1002/jcc.21334
  42. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: Fast, flexible, and free. J Comput Chem. 2005;26(16):1701–1718. https://doi.org/10.1002/jcc.20291
  43. Zhang DH, Wu KL, Zhang X, Deng SQ, Peng B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J Integr Med. 2020;18(2):152–158. https://doi.org/10.1016/j.joim.2020.02.005
DOI: https://doi.org/10.33073/pjm-2024-020 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 207 - 215
Submitted on: Feb 21, 2024
Accepted on: May 3, 2024
Published on: Jun 20, 2024
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Sushil Kumar, Nidhi Joshi, Gourav Choudhir, Sakshi Sharma, Abhay Tiwari, Sulaiman Ali Alharbi, Saleh Alfarraj, Mohammad Javed Ansari, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.