Have a personal or library account? Click to login
Control Effect and Mechanism of Trichoderma asperellum TM11 against Blueberry Root Rot Cover

Control Effect and Mechanism of Trichoderma asperellum TM11 against Blueberry Root Rot

Open Access
|Sep 2023

References

  1. Abdelhai MH, Awad FN, Yang Q, Mahunu GK, Godana EA, Zhang H. Enhancement the biocontrol efficacy of Sporidiobolus pararoseus Y16 against apple blue mold decay by glycine betaine and its mechanism. Biol Control. 2019 Dec;139:104079. https://doi.org/10.1016/j.biocontrol.2019.104079
  2. Abdel-Kader M, El-Mougy N, Lashin S. Essential oils and Trichoderma harzianum as an integrated control measure against faba bean root rot pathogens. J Plant Prot Res. 2011 Jul;51(3):306–313. https://doi.org/10.2478/v10045-011-0050-8
  3. Ahsan T, Chen J, Zhao X, Irfan M, Wu Y. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by Streptomyces strain KX852460 for the biological control of Rhizoctonia solani AG-3 strain KX852461 to control target spot disease in tobacco leaf. AMB Express. 2017 Dec;7(1):54. https://doi.org/10.1186/s13568-017-0351-z
  4. Al-Askar AA, Saber WIA, Ghoneem KM, Hafez EE, Ibrahim AA. Crude citric acid of Trichoderma asperellum: tomato growth promotor and suppressor of Fusarium oxysporum f. sp. lycopersici. Plants. 2021 Jan;10(2):222. https://doi.org/10.3390/plants10020222
  5. Arai M, Han C, Yamano Y, Setiawan A, Kobayashi M. Aaptamines, marine spongean alkaloids, as anti-dormant mycobacterial substances. J Nat Med. 2014 Apr;68(2):372–376. https://doi.org/10.1007/s11418-013-0811-y
  6. Bae H, Sicher RC, Kim MS, Kim SH, Strem MD, Melnick RL, Bailey BA. The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot. 2009 Jul;60(11):3279–3295. https://doi.org/10.1093/jxb/erp165
  7. Bae SJ, Park YH, Bae HJ, Jeon J, Bae H. Molecular identification, enzyme assay, and metabolic profiling of Trichoderma spp. J Microbiol Biotechnol. 2017 Jun;27(6):1157–1162. https://doi.org/10.4014/jmb.1702.02063
  8. Bañados MP. Blueberry production in South America. Acta Hortic. 2006;715:165–172 https://doi.org/10.17660/ActaHortic.2006.715.24
  9. Behiry S, Soliman SA, Massoud MA, Abdelbary M, Kordy AM, Abdelkhalek A, Heflish A. Trichoderma pubescens elicit induced systemic resistance in tomato challenged by Rhizoctonia solani. J Fungi (Basel). 2023 Jan 27;9(2):167. https://doi.org/10.3390/jof9020167
  10. Benítez T, Rincón AM, Limón MC, Codón AC. Biocontrol mechanisms of Trichoderma strains. Int Microbiol. 2004 Dec;7(4):249–260.
  11. Bhutia DD, Zhimo Y, Kole R, Saha J. Antifungal activity of plant extracts against Colletotrichum musae, the post harvest anthracnose pathogen of banana cv. Martaman. Nutr Food Sci. 2016 Feb;46(1):2–15. https://doi.org/10.1108/NFS-06-2015-0068
  12. Bigirimana J, De Meyer G, Poppe J, Elad Y, Höfte M. Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harziamum. Meded – Fac Landbouwkd Toegepaste Biol Wet (Univ Gent). 1997;62:1001–1007.
  13. Calonje M, Novaes-Ledieu M, Bernardo D, Ahrazem O, Mendoza CG. Chemical components and their locations in the Verticillium fungicola cell wall. Can J Microbiol. 2000 Feb;46(2):101–109. https://doi.org/10.1139/w99-120
  14. Chet I, Inbar J. Biological control of fungal pathogens. Appl Biochem Biotechnol. 1994 Jul;48(1):37–43. https://doi.org/10.1007/BF02825358
  15. Chong KP, Rossall S, Atong M. In vitro antimicrobial activity and fungitoxicity of syringic acid, caffeic acid and 4-hydroxybenzoic acid against Ganoderma boninense. J Agric Sci. 2009;1(2):15. https://doi.org/10.5539/jas.v1n2p15
  16. da Silva JAT, de Medeiros EV, da Silva JM, Tenório DA, Moreira KA, Nascimento TCES, Souza-Motta C. Trichoderma aureoviride URM 5158 and Trichoderma hamatum URM 6656 are Biocontrol agents that act against cassava root rot through different Mechanisms. J Phytopathol. 2016 Dec;164(11–12):1003–1011. https://doi.org/10.1111/jph.12521
  17. de França SKS, Cardoso AF, Lustosa DC, Ramos EMLS, de Filippi MCC, da Silva GB. Biocontrol of sheath blight by Trichoderma asperellum in tropical lowland rice. Agron Sustain Dev. 2015 Jan;35(1):317–324. https://doi.org/10.1007/s13593-014-0244-3
  18. de los Santos-Villalobos S, Guzmán-Ortiz DA, Gómez-Lim MA, Délano-Frier JP, de-Folter S, Sánchez-García P, Peña-Cabriales JJ. Potential use of Trichoderma asperellum (Samuels, Liechfeldt et Nirenberg) T8a as a biological control agent against anthracnose in mango (Mangifera indica L.). Biol Control. 2013 Jan;64(1):37–44. https://doi.org/10.1016/j.biocontrol.2012.10.006
  19. Dihazi A, Jaiti F, WafaTaktak, kilani-Feki O, Jaoua S, Driouich A, Baaziz M, Daayf F, Serghini MA. Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L) seedlings. Plant Physiol Biochem. 2012 Jun; 55:7–15. https://doi.org/10.1016/j.plaphy.2012.03.003
  20. El Komy MH, Saleh AA, Eranthodi A, Molan YY. Characterization of novel Trichoderma asperellum isolates to select effective biocontrol agents against tomato Fusarium wilt. Plant Pathol J. 2015 Mar; 31(1):50–60. https://doi.org/10.5423/PPJ.OA.09.2014.0087
  21. Elshahawy IE, El-Mohamedy RS. Biological control of Pythium damping-off and root-rot diseases of tomato using Trichoderma isolates employed alone or in combination. J Plant Pathol. 2019 Aug; 101(3):597–608. https://doi.org/10.1007/s42161-019-00248-z
  22. Faria A, Oliveira J, Neves P, Gameiro P, Santos-Buelga C, de Freitas V, Mateus N. Antioxidant properties of prepared blueberry (Vaccinium myrtillus) extracts. J Agric Food Chem. 2005 Aug; 53(17):6896–6902. https://doi.org/10.1021/jf0511300
  23. Fei NY, Qi YB, Meng TT, Fu JF, Yan XR. First report of root rot caused by Calonectria ilicicola on blueberry in Yunnan Province, China. Plant Dis. 2018 May;102(5):1036–1036. https://doi.org/10.1094/PDIS-09-17-1337-PDN
  24. Guo R, Wang Z, Zhou C, Huang Y, Fan H, Wang Y, Liu Z. Biocontrol potential of Trichoderma asperellum mutants T39 and T45 and their growth promotion of poplar seedlings. J For Res. 2020 Jun; 31(3):1035–1043. https://doi.org/10.1007/s11676-018-0797-0
  25. Hahn M. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J Chem Biol. 2014 Oct;7(4): 133–141. https://doi.org/10.1007/s12154-014-0113-1
  26. Haran S, Schickler H, Chet I. Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology. 1996 Sep;142(9):2321–2331. https://doi.org/10.1099/00221287-142-9-2321
  27. Harman GE. Overview of mechanisms and uses of Trichoderma spp. Phytopathology. 2006 Feb;96(2):190–194. https://doi.org/10.1094/PHYTO-96-0190
  28. He W, Megharaj M, Wu CY, Subashchandrabose SR, Dai CC. Endophyte-assisted phytoremediation: Mechanisms and current application strategies for soil mixed pollutants. Crit Rev Biotechnol. 2020 Jan;40(1):31–45. https://doi.org/10.1080/07388551.2019.1675582
  29. Herrera Cano N, Ballari MS, López AG, Santiago AN. New synthesis and biological evaluation of benzothiazole derivates as antifungal agents. J Agric Food Chem. 2015 Apr;63(14):3681–3686. https://doi.org/10.1021/acs.jafc.5b00150
  30. Jiang H, Zhang L, Zhang J, Ojaghian MR, Hyde KD. Antagonistic interaction between Trichoderma asperellum and Phytophthora capsici in vitro. J Zhejiang Univ Sci B. 2016 Apr;17(4):271–281. https://doi.org/10.1631/jzus.B1500243
  31. Keswani C, Bisen K, Chitara MK, Sarma BK, Singh HB. Exploring the role of secondary metabolites of Trichoderma in tripartite interaction with plant and pathogens. In Singh J, Seneviratne G, editors. Agro-environmental sustainability. Cham (Germany): Springer; 2017. p. 63–79. https://doi.org/10.1007/978-3-319-49724-2_4
  32. Kong P, Hong C. Biocontrol of boxwood blight by Trichoderma koningiopsis Mb2. Crop Prot. 2017 Aug;98:124–127. https://doi.org/10.1016/j.cropro.2017.03.015
  33. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol. 2016 Jul; 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054
  34. Li M, Ma G, Lian H, Su X, Tian Y, Huang W, Mei J, Jiang X. The effects of Trichoderma on preventing cucumber fusarium wilt and regulating cucumber physiology. J Integr Agric. 2019 Mar;18(3):607–617. https://doi.org/10.1016/S2095-3119(18)62057-X
  35. Li S, Hou R, Zhang F, Shang X. First report of Fusarium commune causing root rot of blueberry plants in Guizhou Province, China. Plant Dis. 2023 Apr;107(4):1227. https://doi.org/10.1094/PDIS-06-22-1305-PDN
  36. Liu YH, Lin T, Ye CS, Zhang CQ. First report of Fusarium wilt in blueberry (Vaccinium corymbosum) caused by Fusarium oxysporum in China. Plant Dis. 2014 Aug;98(8):1158–1158. https://doi.org/10.1094/PDIS-02-14-0167-PDN
  37. Loc NH, Huy ND, Quang HT, Lan TT, Thu Ha TT. Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34. Mycology. 2020 Jan 02;11(1):38–48. https://doi.org/10.1080/21501203.2019.1703839
  38. Mathivanan N, Prabavathy VR, Vijayanandraj VR. The effect of fungal secondary metabolites on bacterial and fungal pathogens. In Karlovsky P, editor. Secondary metabolites. Soil ecology. Berlin, Heidelberg (Germany): Springer; 2008. p. 129–140. https://doi.org/10.1007/978-3-540-74543-3_7
  39. Meena M, Swapnil P, Zehra A, Dubey MK, Upadhyay RS. Antagonistic assessment of Trichoderma spp. by producing volatile and non-volatile compounds against different fungal pathogens. Arch Phytopathol Pflanzenschutz. 2017 Aug;50(13–14):629–648. https://doi.org/10.1080/03235408.2017.1357360
  40. Mischke S. A quantitative bioassay for extracellular metabolites that antagonize growth of filamentous fungi, and its use with biocontrol fungi. Mycopathologia. 1997;137(1):45–52. https://doi.org/10.1023/A:1006814521872
  41. Mu J, Li X, Jiao J, Ji G, Wu J, Hu F, Li H. Biocontrol potential of vermicompost through antifungal volatiles produced by indigenous bacteria. Biol Control. 2017 Sep;112:49–54. https://doi.org/10.1016/j.biocontrol.2017.05.013
  42. Mukherjee PK, Raghu K. Effect of temperature on antagonistic and biocontrol potential of Trichoderma sp. on Sclerotium rolfsii. Mycopathologia. 1997;139(3):151–155. https://doi.org/10.1023/A:1006868009184
  43. Muniroh MS, Nusaibah SA, Vadamalai G, Siddique Y. Proficiency of biocontrol agents as plant growth promoters and hydrolytic enzyme producers in Ganoderma boninense infected oil palm seedlings. Curr Plant Biol. 2019 Dec;20:100116. https://doi.org/10.1016/j.cpb.2019.100116
  44. Nakkeeran S, Priyanka R, Rajamanickam S, Sivakumar U. Bacillus amyloliquefaciens alters the diversity of volatile and non-volatile metabolites and induces the expression of defence genes for the management of Botrytis leaf blight of Lilium under protected conditions. J Plant Pathol. 2020 Nov;102(4):1179–1189. https://doi.org/10.1007/s42161-020-00602-6
  45. Nawrocka J, Małolepsza U. Diversity in plant systemic resistance induced by Trichoderma. Biol Control. 2013 Nov;67(2):149–156. https://doi.org/10.1016/j.biocontrol.2013.07.005
  46. Neto CC. Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol Nutr Food Res. 2007 Jun; 51(6):652–664. https://doi.org/10.1002/mnfr.200600279
  47. Nguyen TTT, Lee HB. Isolation and characterization of three Zygomycetous fungi in Korea: Backusella circina, Circinella muscae, and Mucor ramosissimus. Mycobiology. 2018 Dec 21;46(4):317–327. https://doi.org/10.1080/12298093.2018.1538071
  48. Papavizas GC, Lumsden RD. Biological control of soilborne fungal propagules. Annu Rev Phytopathol. 1980 Sep;18(1):389–413. https://doi.org/10.1146/annurev.py.18.090180.002133
  49. Podile AR, Laxmi VDV. Seed Bacterization with Bacillus subtilis AF 1 increases phenylalanine ammonia-lyase and reduces the incidence of Fusarial Wilt in Pigeonpea. J Phytopathol. 1998 Jul;146(5–6):255–259. https://doi.org/10.1111/j.1439-0434.1998.tb04687.x
  50. Ruangwong OU, Wonglom P, Suwannarach N, Kumla J, Thaochan N, Chomnunti P, Pitija K, Sunpapao A. Volatile organic compound from Trichoderma asperelloides TSU1: impact on plant pathogenic fungi. J Fungi. 2021 Mar;7(3):187. https://doi.org/10.3390/jof7030187
  51. Sahebani N, Hadavi N. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol Biochem. 2008 Aug;40(8):2016–2020. https://doi.org/10.1016/j.soilbio.2008.03.011
  52. Saravanakumar K, Yu C, Dou K, Wang M, Li Y, Chen J. Synergistic effect of Trichoderma-derived antifungal metabolites and cell wall degrading enzymes on enhanced biocontrol of Fusarium oxysporum f. sp. cucumerinum. Biol Control. 2016 Mar;94:37–46. https://doi.org/10.1016/j.biocontrol.2015.12.001
  53. Sid Ahmed A, Ezziyyani M, Pérez Sánchez C, Candela ME. Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. Eur J Plant Pathol. 2003;109(6):633–637. https://doi.org/10.1023/A:1024734216814
  54. Sundar D, Perianayaguy B, Reddy AR. Localization of antioxidant enzymes in the cellular compartments of sorghum leaves. Plant Growth Regul. 2004;44(2):157–163. https://doi.org/10.1023/B:GROW.0000049418.92833.d6
  55. Takahashi Y, Kubota T, Shibazaki A, Gonoi T, Fromont J, Kobayashi J. Nakijinamines C–E, new heteroaromatic alkaloids from the sponge Suberites species. Org Lett. 2011 Jun;13(12):3016–3019. https://doi.org/10.1021/ol2008473
  56. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. Trichoderma-plant-pathogen interactions. Soil Biol Biochem. 2008 Jan;40(1):1–10. https://doi.org/10.1016/j.soilbio.2007.07.002
  57. Wang LJ, Wu J, Wang HX, Li SS, Zheng XC, Du H, Xu YJ, Wang LS. Composition of phenolic compounds and antioxidant activity in the leaves of blueberry cultivars. J Funct Foods. 2015 Jun; 16:295–304. https://doi.org/10.1016/j.jff.2015.04.027
  58. Ward NA. Blueberry root rot. Extension Plant Pathologist. 2013; PPFS-FR-S-19.
  59. Wu Q, Sun R, Ni M, Yu J, Li Y, Yu C, Dou K, Ren J, Chen J. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS One. 2017 Jun;12(6):e0179957. https://doi.org/10.1371/journal.pone.0179957
  60. Xie Y, Peng Q, Ji Y, Xie A, Yang L, Mu S, Li Z, He T, Xiao Y, Zhao J, et al. Isolation and identification of antibacterial bioactive compounds from Bacillus megaterium L2. Front Microbiol. 2021 Mar; 12:645484. https://doi.org/10.3389/fmicb.2021.645484
  61. Yi HW, Chi YJ. Biocontrol of Cytospora canker of poplar in northeast China with Trichoderma longibrachiatum. For Pathol. 2011 Aug; 41(4):299–307. https://doi.org/10.1111/j.1439-0329.2010.00704.x
  62. Zhang D, Bi W, Kai K, Ye Y, Liu J. Effect of chlorogenic acid on controlling kiwifruit postharvest decay caused by Diaporthe sp. LWT. 2020 Oct;132:109805. https://doi.org/10.1016/j.lwt.2020.109805
  63. Zhou Y, Yang L, Wang J, Guo L, Huang J. Synergistic effect between Trichoderma virens and Bacillus velezensis on the control of tomato bacterial wilt disease. Hortic. 2021 Nov 01;7(11):439. https://doi.org/10.3390/horticulturae7110439
DOI: https://doi.org/10.33073/pjm-2023-034 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 325 - 337
Submitted on: May 25, 2023
Accepted on: Aug 2, 2023
Published on: Sep 20, 2023
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Si Li, Fu-Mei Zhang, Xiao-Jing Shang, Rui Hou, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.