Abdulgader SM, Okunola AO, Ndlangalavu G, Reeve BWP, Allwood BW, Koegelenberg CFN, Warren RM, Theron G. Diagnosing tuberculosis: What do new technologies allow us to (not) do? Respiration. 2022;101(9):797–813. https://doi.org/10.1159/000525142
Alers S, Löffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012 Jan;32(1):2–11. https://doi.org/10.1128/MCB.06159-11
Cai Y, Yang Q, Tang Y, Zhang M, Liu H, Zhang G, Deng Q, Huang J, Gao Z, Zhou B, et al. Increased complement C1q level marks active disease in human tuberculosis. PLoS One. 2014 Mar;9(3): e92340. https://doi.org/10.1371/journal.pone.0092340
Cardona PJ. [Pathogenesis of tuberculosis and other mycobacteriosis] (in Spanish). Enferm Infecc Microbiol Clin. 2018 Jan;36(1):38–46. https://doi.org/10.1016/j.eimc.2017.10.015
Chandra P, He L, Zimmerman M, Yang G, Köster S, Ouimet M, Wang H, Moore KJ, Dartois V, Schilling JD, et al. Inhibition of fatty acid oxidation promotes macrophage control of Mycobacterium tuberculosis. mBio. 2020 Jul;11(4):e01139–20. https://doi.org/10.1128/mBio.01139-20
Chen G, Wu B, Wu M, Liu F, Qin C, Luo W. Autophagy-related genes affect drug resistance of mycobacteria by regulating autophagy. Int J Clin Exp Pathol. 2019 Jun;12(6):2001–2008.
Cohen KA, Manson AL, Desjardins CA, Abeel T, Earl AM. Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Med. 2019 Jul;11(1):45. https://doi.org/10.1186/s13073-019-0660-8
Donald P, Kaufmann S, Thee S, Mandalakas AM, Lange C. Pathogenesis of tuberculosis: the 1930 Lübeck disaster revisited. Eur Respir Rev. 2022 Jun;31(164):220046. https://doi.org/10.1183/16000617.0046-2022
Ghafouri-Fard S, Shoorei H, Mohaqiq M, Majidpoor J, Moosavi MA, Taheri M. Exploring the role of non-coding RNAs in autophagy. Autophagy. 2022 May;18(5):949–970. https://doi.org/10.1080/15548627.2021.1883881
Huang HY, Lin YC, Cui S, Huang Y, Tang Y, Xu J, Bao J, Li Y, Wen J, Zuo H, et al. miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2022 Jan;50(D1):D222–D230. https://doi.org/10.1093/nar/gkab1079
Huang Z, Shi J, Gao Y, Cui C, Zhang S, Li J, Zhou Y, Cui Q. HMDD v3.0: a database for experimentally supported human microRNA-disease associations. Nucleic Acids Res. 2019 Jan;47(D1): D1013–D1017. https://doi.org/10.1093/nar/gky1010
Ito K, Murphy D. Application of ggplot2 to pharmacometric graphics. CPT Pharmacometrics Syst Pharmacol. 2013 Oct;2(10):e79. https://doi.org/10.1038/psp.2013.56
Kanabalan RD, Lee LJ, Lee TY, Chong PP, Hassan L, Ismail R, Chin VK. Human tuberculosis and Mycobacterium tuberculosis complex: A review on genetic diversity, pathogenesis and omics approaches in host biomarkers discovery. Microbiol Res. 2021 May; 246:126674. https://doi.org/10.1016/j.micres.2020.126674
Kang L, Guo N, Liu X, Wang X, Guo W, Xie SM, Liu C, Lv P, Xing L, Zhang X, et al. High mobility group box-1 protects against Aflatoxin G1-induced pulmonary epithelial cell damage in the lung inflammatory environment. Toxicol Lett. 2020 Oct;331:92–101. https://doi.org/10.1016/j.toxlet.2020.05.013
Khan A, Jagannath C. Analysis of host-pathogen modulators of autophagy during Mycobacterium tuberculosis infection and therapeutic repercussions. Int Rev Immunol. 2017 Sep;36(5):271–286. https://doi.org/10.1080/08830185.2017.1356924
Kim JK, Kim YS, Lee HM, Jin HS, Neupane C, Kim S, Lee SH, Min JJ, Sasai M, Jeong JH, et al. GABAergic signaling linked to autophagy enhances host protection against intracellular bacterial infections. Nat Commun. 2018 Oct;9(1):4184. https://doi.org/10.1038/s41467-018-06487-5
Kocak M, Ezazi Erdi S, Jorba G, Maestro I, Farrés J, Kirkin V, Martinez A, Pless O. Targeting autophagy in disease: established and new strategies. Autophagy. 2022 Mar;18(3):473–495. https://doi.org/10.1080/15548627.2021.1936359
Kumar S, Jain A, Choi SW, Peixoto Duarte da Silva G, Allers L, Mudd MH, Peters RS, Anonsen JH, Rusten TE, Lazarou M, et al. Mammalian Atg8-family proteins are upstream regulators of the lysosomalsystem by controlling MTOR and TFEB. Autophagy. 2020 Dec; 16(12):2305–2306. https://doi.org/10.1080/15548627.2020.1837423
Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q. HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res. 2014 Jan;42(D1):D1070–D1704. https://doi.org/10.1093/nar/gkt1023
Lin Y, Duan Z, Xu F, Zhang J, Shulgina MV, Li F. Construction and analysis of the transcription factor-microRNA co-regulatory network response to Mycobacterium tuberculosis: a view from the blood. Am J Transl Res. 2017 Apr;9(4):1962–1976.
Liu C, Wu Z, Wang L, Yang Q, Huang J, Huang J. A mitophagy-related gene signature for subtype identification and prognosis prediction of hepatocellular carcinoma. Int J Mol Sci. 2022 Oct;23(20): 12123. https://doi.org/10.3390/ijms232012123
Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q. An analysis of human microRNA and disease associations. PLoS One. 2008;3(10):e3420. https://doi.org/10.1371/journal.pone.0003420
Lu Y, Wang X, Dong H, Wang X, Yang P, Han L, Wang Y, Zheng Z, Zhang W, Zhang L. Bioinformatics analysis of microRNA expression between patients with and without latent tuberculosis infections. Exp Ther Med. 2019 May;17(5):3977–3988. https://doi.org/10.3892/etm.2019.7424
Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, Puigserver P, Carlsson E, Ridderstråle M, Laurila E, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003 Jul;34(3):267–273. https://doi.org/10.1038/ng1180
Ouimet M, Koster S, Sakowski E, Ramkhelawon B, van Solingen C, Oldebeken S, Karunakaran D, Portal-Celhay C, Sheedy FJ, Ray TD, et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol. 2016 Jun;17(6):677–686. https://doi.org/10.1038/ni.3434
Pahari S, Negi S, Aqdas M, Arnett E, Schlesinger LS, Agrewala JN. Induction of autophagy through CLEC4E in combination with TLR4: an innovative strategy to restrict the survival of Mycobacterium tuberculosis. Autophagy. 2020 Jun;16(6):1021–1043. https://doi.org/10.1080/15548627.2019.1658436
Paik S, Kim JK, Chung C, Jo EK. Autophagy: A new strategy for host-directed therapy of tuberculosis. Virulence. 2019 Dec;10(1): 448–459. https://doi.org/10.1080/21505594.2018.1536598
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015 Apr;43(7):e47. https://doi.org/10.1093/nar/gkv007
Sampath P, Periyasamy KM, Ranganathan UD, Bethunaickan R. Monocyte and macrophage miRNA: Potent biomarker and target for host-directed therapy for tuberculosis. Front Immunol. 2021 Jun;12:667206. https://doi.org/10.3389/fimmu.2021.667206
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genom Res. 2003 Nov;13(11):2498–2504. https://doi.org/10.1101/gr.1239303
Shariq M, Quadir N, Alam A, Zarin S, Sheikh JA, Sharma N, Samal J, Ahmad U, Kumari I, Hasnain SE, et al. The exploitation of host autophagy and ubiquitin machinery by Mycobacterium tuberculosis in shaping immune responses and host defense during infection. Autophagy. 2023 Jan;19(1):3–23. https://doi.org/10.1080/15548627.2021.2021495
Sharma A, Machado E, Lima KVB, Suffys PN, Conceição EC. Tuberculosis drug resistance profiling based on machine learning: A literature review. Braz J Infect Dis. 2022 Jan–Feb;26(1):102332. https://doi.org/10.1016/j.bjid.2022.102332
Shen Y, Gao Y, Shi J, Huang Z, Dai R, Fu Y, Zhou Y, Kong W, Cui Q. MicroRNA-Disease Network Analysis Repurposes Methotrexate for the Treatment of Abdominal Aortic Aneurysm in Mice. Genomics Proteomics Bioinf. 2022. https://doi.org/10.1016/j.gpb.2022.08.002
Sinigaglia A, Peta E, Riccetti S, Venkateswaran S, Manganelli R, Barzon L. Tuberculosis-associated microRNAs: From pathogenesis to disease biomarkers. Cells. 2020 Sep;9(10):2160. https://doi.org/10.3390/cells9102160
Sun S, Shen Y, Wang J, Li J, Cao J, Zhang J. Identification and validation of autophagy-related genes in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2021 Jan; 16:67–78. https://doi.org/10.2147/COPD.S288428
Wei T, Simko V. R package ‘corrplot’: Visualization of a correlation matrix. (Version 0.92); 2021 [cited 2022 Dec 1]. Available from https://github.com/taiyun/corrplot
Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics. 2010 Jun;26(12):1572–1573. https://doi.org/10.1093/bioinformatics/btq170
Yang L, Hu X, Chai X, Ye Q, Pang J, Li D, Hou T. Opportunities for overcoming tuberculosis: Emerging targets and their inhibitors. Drug Discov Today. 2022 Jan;27(1):326–336. https://doi.org/10.1016/j.drudis.2021.09.003
Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW, Levine DA, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612. https://doi.org/10.1038/ncomms3612
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012 May;16(5):284–287. https://doi.org/10.1089/omi.2011.0118
Zhang MY, Huo C, Liu JY, Shi ZE, Zhang WD, Qu JJ, Yue YL, Qu YQ. Identification of a five autophagy subtype-related gene expression pattern for improving the prognosis of lung adenocarcinoma. Front Cell Dev Biol. 2021 Nov;9:756911. https://doi.org/10.3389/fcell.2021.756911
Zhao S, Guo Y, Sheng Q, Shyr Y. Advanced heat map and clustering analysis using heatmap3. Biomed Res Int. 2014;2014:986048. https://doi.org/10.1155/2014/986048
Zhou J, Lv J, Carlson C, Liu H, Wang H, Xu T, Wu F, Song C, Wang X, Wang T, et al. Trained immunity contributes to the prevention of Mycobacterium tuberculosis infection, a novel role of autophagy. Emerg Microbes Infect. 2021 Dec;10(1):578–588. https://doi.org/10.1080/22221751.2021.1899771
Zhu Q, Zhang Q, Gu M, Zhang K, Xia T, Zhang S, Chen W, Yin H, Yao H, Fan Y, et al. MIR106A-5p upregulation suppresses autophagy and accelerates malignant phenotype in nasopharyngeal carcinoma. Autophagy. 2021 Jul;17(7):1667–1683. https://doi.org/10.1080/15548627.2020.1781368