Have a personal or library account? Click to login
Breeding of High Daptomycin-Producing Strain by Streptomycin Resistance Superposition Cover

Breeding of High Daptomycin-Producing Strain by Streptomycin Resistance Superposition

Open Access
|Sep 2022

References

  1. Andersson DA, Levin BR. The biological cost of antibiotic resistance. Curr Opin Microbiol. 1999 Oct;2(5):489–493. https://doi.org/10.1016/S1369-5274(99)00005-3
  2. Cai C, Wang Y, Zheng Y. [Ribosome engineering and microorganism secondary metabolite production] (in Chinese). Biotechnol Bull. 2012;09:51–58. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2012.09.029
  3. Gao FX, Yu YQ, Wang KR, Xie Y, Zhang HL, Ran QP, Tian M. [Breeding of high daptomycin-producing strain by ARTP and UV mutagenesis] (in Chinese). Chin J Antibiot. 2016;41(06):425–428. https://doi.org/10.13461/j.cnki.cja.005748
  4. Jung D, Rozek A, Okon M, Hancock REW. Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol. 2004 Jul;11(7):949–957. https://doi.org/10.1016/j.chembiol.2004.04.020
  5. Liao G, Shi T, Xie J. Regulation mechanisms underlying the biosynthesis of daptomycin and related lipopeptides. J Cell Biochem. 2012 Mar; 113(3):735–741. https://doi.org/10.1002/jcb.23414
  6. Liu HH, Chen YH, Chen M. [Breeding of high avilamycin-producing strains by ribosome engineering] (in Chinese). J Agr Biotechnol. 2019a;27(07):1322–1330.
  7. Liu J, Zhang Y, He W. [Construction of a novel carrimycin-producing strain by using CRISPR-Cas9 and ribosome engineering techniques] (in Chinese). Chin J Biotech. 2021a;37(06):2116–2126. https://doi.org/10.13345/j.cjb.200763
  8. Liu WT, Chen EZ, Yang L, Peng C, Wang Q, Xu Z, Chen DQ. Emerging resistance mechanisms for 4 types of common anti-MRSA antibiotics in Staphylococcus aureus: A comprehensive review. Microb Pathog. 2021b Jul; 156:104915. https://doi.org/10.1016/j.micpath.2021.104915
  9. Liu X, Zhou S, Sun K. [Study on response surface methodology for doxymycin fermentation] (in Chinese). J South-Cent Univ Natl (Nat Sci Edit). 2019b;38(01):76–80.
  10. Lopatniuk M, Myronovskyi M, Nottebrock A, Busche T, Kalinowski J, Ostash B, Fedorenko V, Luzhetskyy A. Effect of “ribosome engineering” on the transcription level and production of S. albus indigenous secondary metabolites. Appl Microbiol Biotechnol. 2019 Sep;103(17):7097–7110. https://doi.org/10.1007/s00253-019-10005-y
  11. Lu F, Hou Y, Li X, He L, Chu Y, Xia H, Tian Y. [Breeding of high milbemycin-producing strain by ribosomal engineering] (in Chinese). Chin J Antibiot. 2018;43(07):811–816. https://doi.org/10.13461/j.cnki.cja.006299
  12. Matsuo T, Mori N, Sakurai A, Kanie T, Mikami Y, Uehara Y, Furukawa K. Effectiveness of daptomycin against infective endocarditis caused by highly penicillin-resistant viridans group streptococci. IDCases. 2021 Apr 5;24:e01113. https://doi.org/10.1016/j.idcr.2021.e01113
  13. Ng IS, Ye C, Zhang Z, Lu Y, Jing K. Daptomycin antibiotic production processes in fed-batch fermentation by Streptomyces roseosporus NRRL11379 with precursor effect and medium optimization. Bioprocess Biosyst Eng. 2014 Mar;37(3):415–423. https://doi.org/10.1007/s00449-013-1007-2
  14. Nishimura K, Hosaka T, Tokuyama S, Okamoto S, Ochi K. Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2). J Bacteriol. 2007 May; 189(10):3876–3883. https://doi.org/10.1128/JB.01776-06
  15. Ochi K, Okamoto S, Tozawa Y, Inaoka T, Hosaka T, Xu J, Kurosawa K. Ribosome engineering and secondary metabolite production. Adv Appl Microbiol. 2004;56:155–184. https://doi.org/10.1016/S0065-2164(04)56005-7
  16. Ochi K. From microbial differentiation to ribosome engineering. Biosci Biotechnol Biochem. 2007 Jun;71(6):1373–1386. https://doi.org/10.1271/bbb.70007
  17. Osorio C, Garzón L, Jaimes D, Silva E, Bustos RH. Impact on antibiotic resistance, therapeutic success, and control of side effects in therapeutic drug monitoring (TDM) of daptomycin: A scoping review. Antibiotics (Basel). 2021 Mar 5;10(3):263. https://doi.org/10.3390/antibiotics10030263
  18. Tamehiro N, Hosaka T, Xu J, Hu H, Otake N, Ochi K. Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Appl Environ Microbiol. 2003 Nov; 69(11):6412–6417. https://doi.org/10.1128/AEM.69.11.6412-6417.2003
  19. Tótoli EG, Garg S, Salgado HR. Daptomycin: physicochemical, analytical, and pharmacological properties. Ther Drug Monit. 2015 Dec;37(6):699–710. https://doi.org/10.1097/FTD.0000000000000222
  20. Wang G, Hosaka T, Ochi K. Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl Environ Microbiol. 2008 May;74(9):2834–2840. https://doi.org/10.1128/AEM.02800-07
  21. Wang JP. [Study on screening of daptomycin producing strains and fermentation conditions] [MD Thesis] (in Chinese). Tianjin (China): Tianjin University, Department of Chemical Engineering; 2007. https://doi.org/10.7666/d.y1357552
  22. Wang YQ, Yan YZ, Hu B, Liao JX, Tang F, Zhou H, Cao RY. [Breeding of high daptomycin producing strains and optimization of fermentation conditions] (in Chinese). Chin J Antibiot. 2020; 45(12): 1232–1237. https://doi.org/10.13461/j.cnki.cja.007055
  23. Wu GY, Chen XS, Wang L, Mao ZG. [Screening of high-yield ε-poly-L-lysine producing strains through ribosome engineering] (in Chinese). Microbiol China. 2016;43(12):2744–2751. https://doi.org/10.13344/j.microbiol.china.160026
  24. Xie Y, Yao S, Li W, Dan R, Wu G, Tong T, Chen Q. [Development and application of ribosome engineering in actinomycetes] (in Chinese). Chin J Biotech. 2022;38:546–564. https://doi.org/10.13345/j.cjb.210150
  25. Xie ZP, Xu ZN, Zheng JM, Cen PL. [Determination of ammonium nitrogen in fermentation broth through indophenol blue reaction] (in Chinese). J Zhejiang Univ (Eng Sci). 2005;03:123–125. https://doi.org/10.3785/j.issn.1008-973X.2005.03.026
  26. Yu G, Hu Y, Hui M, Chen L, Wang L, Liu N, Yin Y, Zhao J. Genome shuffling of Streptomyces roseosporus for improving daptomycin production. Appl Biochem Biotechnol. 2014 Mar;172(5): 2661–2669. https://doi.org/10.1007/s12010-013-0687-z
  27. Zhang HY. [Optimization of fermentation medium and strain breeding for titer improvement of daptomycin by Streptomyces coelicolor] [MD Thesis] (in Chinese). Baoding (China): Hebei University, Department of Life Sciences; 2021. https://doi.org/10.27103/d.cnki.ghebu.2021.000755
  28. Zhou J, Zhang Y. [Precursor resistance screening on mutation breeding and fed-batch fermentation for daptomycin production] (in Chinese). Chin J Antibiot 2018;43:817–823. https://doi.org/10.13461/j.cnki.cja.006300
  29. Zuttion F, Colom A, Matile S, Farago D, Pompeo F, Kokavecz J, Galinier A, Sturgis J, Casuso I. High-speed atomic force microscopy highlights new molecular mechanism of daptomycin action. Nat Commun. 2020 Dec 9;11(1):6312. https://doi.org/10.1038/s41467-020-19710-z
DOI: https://doi.org/10.33073/pjm-2022-041 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 463 - 471
Submitted on: May 5, 2022
Accepted on: Aug 2, 2022
Published on: Sep 24, 2022
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Shuaibei Chu, Wenting Hu, Kaihong Zhang, Fengli Hui, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.