Have a personal or library account? Click to login
Detection by Whole-Genome Sequencing of a Novel Metallo-β-Lactamase Produced by Wautersiella falsenii Causing Urinary Tract Infection in Tunisia Cover

Detection by Whole-Genome Sequencing of a Novel Metallo-β-Lactamase Produced by Wautersiella falsenii Causing Urinary Tract Infection in Tunisia

Open Access
|Feb 2022

References

  1. Bellais S, Aubert D, Naas T, Nordmann P. Molecular and biochemical heterogeneity of class B carbapenem-hydrolyzing-lactamases in Chryseobacterium meningosepticum. Antimicrob Agents Chemother. 2000a Jul;44(7):1878–1886. <a href="https://doi.org/10.1128/AAC.44.7.1878-1886.2000" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AAC.44.7.1878-1886.2000</a>
  2. Bellais S, Girlich D, Karim A, Nordmann P. EBR-1, a novel Ambler subclass B1 Beta-lactamase from Empedobacter brevis. Antimicrob Agents Chemother. 2002a Oct;46(10):3223–3227. <a href="https://doi.org/10.1128/AAC.46.10.3223-3227.2002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AAC.46.10.3223-3227.2002</a>
  3. Bellais S, Léotard S, Poirel L, Naas T, Nordmann P. Molecular characterization of a carbapenem-hydrolyzing-lactamase from Chryseobacterium (Flavobacterium) indologenes. FEMS Microbiol Lett. 1999 Feb 15;171(2):127–132. <a href="https://doi.org/10.1111/j.1574-6968.1999.tb13422.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1574-6968.1999.tb13422.x</a>
  4. Bellais S, Naas T, Nordmann P. Genetic and biochemical characterization of CGB-1, a novel Ambler class B carbapenem-hydrolyzing Beta-lactamase from Chryseobacterium gleum. Antimicrob Agents Chemother. 2002b Sep;46(9):2791–2796. <a href="https://doi.org/10.1128/AAC.46.9.2791-2796.2002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AAC.46.9.2791-2796.2002</a>
  5. Bellais S, Poirel L, Leotard S, Naas T, Nordmann P. Genetic diversity of carbapenem-hydrolyzing metallo-b-lactamases from Chryseobacterium (Flavobacterium) indologenes. Antimicrob Agents Chemo ther. 2000b Nov;44(11):3028–3034. <a href="https://doi.org/10.1128/AAC.44.11.3028-3034.2000" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AAC.44.11.3028-3034.2000</a>
  6. Christensen H, Bisgaard M. Phylogenetic relationships of Riemerella anatipestifer serovars and related taxa and an evaluation of specific PCR tests reported for R. anatipestifer. J Appl Microbiol. 2010 May;108(5):1612–1619. <a href="https://doi.org/10.1111/j.1365-2672.2009.04558.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1365-2672.2009.04558.x</a>
  7. CLSI. Performance standards for antimicrobial susceptibility testing. 29th ed. CLSI supplement M100. Wayne (USA): Clinical and Laboratory Standards Institute; 2019.
  8. Collins C, Almuzara M, Saigo M, Montaña S, Chiem K, Traglia G, Mussi MA, Tolmasky M, Iriarte A, Vay C, et al. Whole-Genome Analysis of an extensively drug-resistance Empedobacter falsenii strain reveals distinct features and the presence of a novel metallo-β-lactamase (EBR-2). Curr Microbiol. 2018 Aug;75(8):1084–1089. <a href="https://doi.org/10.1007/s00284-018-1498-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00284-018-1498-9</a>
  9. Davies J, Wright GD. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol. 1997 Jun;5(6):234–240. <a href="https://doi.org/10.1016/S0966-842X(97)01033-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/S0966-842X(97)01033-0</a>
  10. Forsberg KJ, Patel S, Wencewicz TA, Dantas G. The tetracycline destructases: a novel family of tetracycline-inactivating enzymes. Chem Biol. 2015 Jul 23;22(7):888–897. <a href="https://doi.org/10.1016/j.chembiol.2015.05.017" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.chembiol.2015.05.017</a>
  11. Giordano C, Falleni M, Capria AL, Caracciolo F, Petrini M, Barnini S. First report of Wautersiella falsenii genomovar 2 isolated from the respiratory tract of an immunosuppressed man. IDCases. 2016 Mar 5;4:27–29. <a href="https://doi.org/10.1016/j.idcr.2016.02.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.idcr.2016.02.009</a>
  12. Girlich D, Halimi D, Zambardi G, Nordmann P. Evaluation of Etest® strips for detection of KPC and metallo-carbapenemases in Enterobacteriaceae. Diagn Microbiol Infect Dis. 2013 Nov;77(3):200–201. <a href="https://doi.org/10.1016/j.diagmicrobio.2013.08.002" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.diagmicrobio.2013.08.002</a>
  13. Harris DD, Pacheco A, Lindner AS. Detecting potential pathogens on hospital surfaces: an assessment of carpet tile flooring in the hospital patient environment. Indoor Built Environ. 2010;19(2):239–249. <a href="https://doi.org/10.1177/1420326X09347050" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1177/1420326X09347050</a>
  14. Kämpfer P, Avesani V, Janssens M, Charlier J, De Baere T, Vaneechoutte M. Description of Wautersiella falsenii gen. nov., sp. nov., to accommodate clinical isolates phenotypically resembling members of the genera Chryseobacterium and Empedobacter. Int J Syst Evol Microbiol. 2006 Oct;56(10):56:2323–2329. <a href="https://doi.org/10.1099/ijs.0.64393-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1099/ijs.0.64393-0</a>
  15. Maleki-Ravasan N, Oshaghi MA, Afshar D, Arandian MH, Hajikhani S, Akhavan AA, Yakhchali B, Shirazi MH, Rassi Y, Jafari R, et al. Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic Zoonotic Cutaneous Leishmaniasis (ZCL) focus. Parasit Vectors. 2015 Jan 29;8:63. <a href="https://doi.org/10.1186/s13071-014-0517-3" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1186/s13071-014-0517-3</a>
  16. Meier M, Hamprecht A. Systematic comparison of four methods for detection of carbapenemase-producing Enterobacterales directly from blood cultures. J Clin Microbiol. 2019 Oct 23;57(11):e00709–19. <a href="https://doi.org/10.1128/JCM.00709-19" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/JCM.00709-19</a>
  17. Moore IF, Hughes DW, Wright GD. Tigecycline is modified by the flavin-dependent monooxygenase TetX. Biochemistry. 2005 Sep 6;44(35):11829–11835. <a href="https://doi.org/10.1021/bi0506066" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1021/bi0506066</a>
  18. Perkins SD, Angenent LT. Potential pathogenic bacteria in metal-working fluids and aerosols from a machining facility. FEMS Microbiol Ecol. 2010 Dec;74(3):643–654. <a href="https://doi.org/10.1111/j.1574-6941.2010.00976.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1574-6941.2010.00976.x</a>
  19. Ramirez MS, Tolmasky ME. Aminoglycoside Modifying Enzymes. Drug Resist Updat. 2010 Dec;13(6):151–171. <a href="https://doi.org/10.1016/j.drup.2010.08.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.drup.2010.08.003</a>
  20. Rossolini GM, Franceschini N, Riccio ML, Mercuri PS, Perilli M, Galleni M, Frere JM, Amicosante G. Characterization and sequence of the Chryseobacterium (Flavobacterium) meningosepticum carbapenemase: a new molecular class B β-lactamase showing a broad substrate profile. Biochem J. 1998 May 15;332 (1):145–152. <a href="https://doi.org/10.1042/bj3320145" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1042/bj3320145</a>
  21. Sato K, Fujii T, Okamoto R, Inoue M, Mitsuhashi S. Biochemical properties of beta-lactamase produced by Flavobacterium odoratum. Antimicrob Agents Chemother. 1985 Apr;27(4):612–614. <a href="https://doi.org/10.1128/AAC.27.4.612" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AAC.27.4.612</a>
  22. Smith CJ, Owen C, Kirby L. Activation of a cryptic streptomycin-resistance gene in the Bacteroides erm transposon, Tn4551. Mol Microbiol. 1992 Aug;6(16):2287–2297. <a href="https://doi.org/10.1111/j.1365-2958.1992.tb01404.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1365-2958.1992.tb01404.x</a>
  23. Société Française de Microbiologie. CASFM/EUCAST: Société Française de Microbiologie Ed. Paris (France): Société Française de Microbiologie; 2019. [cited 2021 Jul 01]. Available from https://www.sfm-microbiologie.org/2019/01/07/casfm-eucast-2019
  24. Tolmasky ME. Aminoglycoside-modifying enzymes: characteristics, localization, and dissemination. In: Bonomo RA, Tolmasky ME, editors. Enzyme-mediated resistance to antibiotics: mechanisms, dissemi nation, and prospects for inhibition. Washington (USA): ASM Press; 2007. p. 35–52. <a href="https://doi.org/10.1128/9781555815615.ch4" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/9781555815615.ch4</a>
  25. Traglia GM, Dixon C, Chiem K, Almuzara M, Barberis C, Montana S, Merino C, Mussi MA, Tolmasky ME, Iriarte A, et al. Draft genome sequence of Empedobacter (Formerly Wautersiella) falsenii comb. nov. Wf282, a strain isolated from a cervical neck abscess. Genome Announc. 2015 Apr 2;3(2):e00235–15. <a href="https://doi.org/10.1128/genomeA.00235-15" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/genomeA.00235-15</a>
  26. Vakulenko SB, Mobashery S. Versatility of aminoglycosides and prospects for their future. Clin Microbiol Rev. 2003 Jul;16(3):430–450. <a href="https://doi.org/10.1128/CMR.16.3.430-450.2003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/CMR.16.3.430-450.2003</a>
  27. Van der Velden LBJ, de Jong AS, de Jong H, de Gier RPE, Rentenaar RJ. First report of a Wautersiella falsenii isolated from the urine of an infant with pyelonephritis. Diagn Microbiol Infect Dis. 2012 Dec;74(4):404–405. <a href="https://doi.org/10.1016/j.diagmicrobio.2012.08.008" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.diagmicrobio.2012.08.008</a>
  28. Zaman K, Gupta P, Kaur V, Mohan B, Taneja M. Empedobacter falsenii: A rare non-fermenter causing urinary tract infection in a child with bladder cancer. SOA Clin Med Cases Rep Rev. 2017; 1(1):002.
  29. Zhang RG, Tan X, Liang Y, Meng TY, Liang HZ, Lv J. Description of Chishuiella changwenlii gen. nov., sp. nov., isolated from freshwater, and transfer of Wautersiella falsenii to the genus Empedobacter as Empedobacter falsenii comb. nov. Int J Syst Evol Microbiol. 2014 Aug;64(Pt 8):2723–2728. <a href="https://doi.org/10.1099/ijs.0.063115-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1099/ijs.0.063115-0</a>
DOI: https://doi.org/10.33073/pjm-2022-010 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 73 - 81
Submitted on: Aug 20, 2021
Accepted on: Nov 22, 2021
Published on: Feb 27, 2022
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Raouaa Maaroufi, Olfa Dziri, Linda Hadjadj, Seydina M. Diene, Jean-Marc Rolain, Chedly Chouchani, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.