Have a personal or library account? Click to login
The Characteristics and Function of Internalin G in Listeria monocytogenes Cover

The Characteristics and Function of Internalin G in Listeria monocytogenes

Open Access
|Mar 2022

References

  1. Al-Obaidi MMJ, Desa MNM. Mechanisms of blood brain barrier disruption by different types of bacteria, and bacterial-host interactions facilitate the bacterial pathogen invading the brain. Cell Mol Neurobiol. 2018 Oct;38(7):1349–1368. https://doi.org/10.1007/s10571-018-0609-2
  2. Balandyté L, Brodard I, Frey J, Oevermann A, Abril C. Ruminant rhombencephalitis-associated Listeria monocytogenes alleles linked to a multilocus variable-number tandem-repeat analysis complex. Appl Environ Microbiol. 2011;77(23):8325–8335. https://doi.org/10.1128/AEM.06507-11
  3. Bu RE, Wang JL, Wu JH, Xilin GW, Chen JL, Wang H. Indirect enzyme-linked immunosorbent assay method based on Streptococcus agalactiae rSip-Pgk-FbsA fusion protein for detection of bovine mastitis. Pol J Vet Sci. 2017 Mar 1;20(2):355–362. https://doi.org/10.1515/pjvs-2017-0043
  4. Chandrashekar DS, Golonka RM, Yeoh BS, Gonzalez DJ, Heikenwälder M, Gerwirtz AT, Varambally S, Vijay-Kumar M. Fermentable fiber-induced hepatocellular carcinoma in mice recapitulates gene signatures found in human liver cancer. PLoS One. 2020 Jun 19;15(6):e0234726. https://doi.org/10.1371/journal.pone.0234726
  5. Chen S, Meng F, Sun X, Yao H, Wang Y, Pan Z, Yin Y, Jiao X. Epidemiology of human listeriosis in China during 2008–2017. Foodborne Pathog Dis. 2020 Feb 01;17(2):119–125. https://doi.org/10.1089/fpd.2019.2683
  6. Costa AC, Pinheiro J, Reis SA, Cabanes D, Sousa S. Listeria monocytogenes interferes with host cell mitosis through its virulence factors InlC and ActA. Toxins (Basel). 2020 Jun 20;12(6):411–415. https://doi.org/10.3390/toxins12060411
  7. Datta AR, Burall LS. Serotype to genotype: the changing landscape of listeriosis outbreak investigations. Food Microbiol. 2018 Oct;75:18–27. https://doi.org/10.1016/j.fm.2017.06.013
  8. de las Heras A, Cain RJ, Bielecka MK, Vázquez-Boland JA. Regulation of Listeria virulence: PrfA master and commander. Curr Opin Microbiol. 2011 Apr;14(2):118–127. https://doi.org/10.1016/j.mib.2011.01.005
  9. Dowd GC, Bahey-el-din M, Casey PG, Joyce SA, Hill C, Gahan CGM. Listeria monocytogenes mutants defective in gallbladder replication represent safety-enhanced vaccine delivery platforms. Hum Vaccin Immunother. 2016 Aug 02;12(8):2059–2063. https://doi.org/10.1080/21645515.2016.1154248
  10. Drolia R, Bhunia AK. Crossing the intestinal barrier via Listeria adhesion protein and internalin A. Trends Microbiol. 2019 May; 27(5):408–425. https://doi.org/10.1016/j.tim.2018.12.007
  11. Gouin E, Balestrino D, Rasid O, Nahori MA, Villiers V, Impens F, Volant S, Vogl T, Jacob Y, Dussurget O, et al. Ubiquitination of Listeria virulence factor InlC contributes to the host response to infection. MBio. 2019 Dec 24;10(6):e02778–e19. https://doi.org/10.1128/mBio.02778-19
  12. Ireton K, Mortuza R, Gyanwali GC, Gianfelice A, Hussain M. Role of internalin proteins in the pathogenesis of Listeria monocytogenes. Mol Microbiol. 2021 Dec;116(6):1407–1419. https://doi.org/10.1111/mmi.14836
  13. Jia Y, Nightingale KK, Boor KJ, Ho A, Wiedmann M, McGann P. Distribution of internalin gene profiles of Listeria monocytogenes isolates from different sources associated with phylogenetic lineages. Foodborne Pathog Dis. 2007 Jun;4(2):222–232. https://doi.org/10.1089/fpd.2006.0081
  14. Jianjun J. Disruption of InlC2 enhances the internalization of Listeria monocytogenes by epithelial cells. [PhD Thesis]. Shihezi (China): Shihezi University; 2011.
  15. Lecuit M. Listeria monocytogenes, a model in infection biology. Cell Microbiol. 2020 Apr;22(4):e13186. https://doi.org/10.1111/cmi.13186
  16. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019 Jul 02;47 W1:W199–W205. https://doi.org/10.1093/nar/gkz401
  17. Liu Y, Sun W, Sun T, Gorris LGM, Wang X, Liu B, Dong Q. The prevalence of Listeria monocytogenes in meat products in China: A systematic literature review and novel meta-analysis approach. Int J Food Microbiol. 2020 Jan;312:108358. https://doi.org/10.1016/j.ijfoodmicro.2019.108358
  18. Matle I, Mbatha KR, Madoroba E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. Onderstepoort J Vet Res. 2020 Oct 09;87(1):e1–e20. https://doi.org/10.4102/ojvr.v87i1.1869
  19. Matsumoto H, Haniu H, Komori N. Determination of protein molecular weights on SDS-PAGE. Methods Mol Biol. 2019; 1855: 101–105. https://doi.org/10.1007/978-1-4939-8793-1_10
  20. Medeiros M, Castro VHL, Mota ALAA, Pereira MG, De Martinis ECP, Perecmanis S, Santana AP. Assessment of internalin A gene sequences and cell adhesion and invasion capacity of Listeria monocytogenes strains isolated from foods of animal and related origins. Foodborne Pathog Dis. 2021 Apr 01;18(4):243–252. https://doi.org/10.1089/fpd.2020.2855
  21. Mir SA. Structure and function of the important internalins of Listeria monocytogenes. Curr Protein Pept Sci. 2021 Dec 22;22(8): 620–628. https://doi.org/10.2174/1389203722666210902163300
  22. Mitchell G, Cheng MI, Chen C, Nguyen BN, Whiteley AT, Kianian S, Cox JS, Green DR, McDonald KL, Portnoy DA. Listeria monocytogenes triggers noncanonical autophagy upon phagocytosis, but avoids subsequent growth-restricting xenophagy. Proc Natl Acad Sci USA. 2018 Jan 09;115(2):E210–E217. https://doi.org/10.1073/pnas.1716055115
  23. Pereira MG, de Almeida OGG, da Silva HRA, Ishizawa MH, De Martinis ECP. Studies on host-foodborne bacteria in intestinal three-dimensional cell culture model indicate possible mechanisms of interaction. World J Microbiol Biotechnol. 2021 Feb;37(2):31. https://doi.org/10.1007/s11274-021-02996-6
  24. Pizarro-Cerdá J, Cossart P. Listeria monocytogenes: cell biology of invasion and intracellular growth. Microbiol Spectr. 2018 Nov 02;6(6):57–69. https://doi.org/10.1128/microbiolspec.GPP3-0013-2018
  25. Radoshevich L, Cossart P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol. 2018 Jan;16(1):32–46. https://doi.org/10.1038/nrmicro.2017.126
  26. Wang Y, Lu L, Lan R, Salazar JK, Liu J, Xu J, Ye C. Isolation and characterization of Listeria species from rodents in natural environments in China. Emerg Microbes Infect. 2017 Jan 01;6(1):1–6. https://doi.org/10.1038/emi.2017.28
  27. Yi Z, Xie J. Comparative proteomics reveals the spoilage-related factors of Shewanella putrefaciens under refrigerated condition. Front Microbiol. 2021 Dec 3;12:740482. https://doi.org/10.3389/fmicb.2021.740482
  28. Younis KM, Usup G, Ahmad A. Secondary metabolites produced by marine streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis. Environ Sci Pollut Res Int. 2016 Mar;23(5):4756–4767. https://doi.org/10.1007/s11356-015-5687-9
DOI: https://doi.org/10.33073/pjm-2022-009 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 63 - 71
Submitted on: Nov 22, 2021
Accepted on: Feb 10, 2022
Published on: Mar 30, 2022
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Huitian Gou, Yuanyuan Liu, Wenjing Shi, Jinyu Nan, Chuan Wang, Yanan Sun, Qihang Cao, Huilin Wei, Chen Song, Changqing Tian, Yanquan Wei, Huiwen Xue, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.