Have a personal or library account? Click to login
The Characteristics and Function of Internalin G in Listeria monocytogenes Cover

The Characteristics and Function of Internalin G in Listeria monocytogenes

Open Access
|Mar 2022

References

  1. Al-Obaidi MMJ, Desa MNM. Mechanisms of blood brain barrier disruption by different types of bacteria, and bacterial-host interactions facilitate the bacterial pathogen invading the brain. Cell Mol Neurobiol. 2018 Oct;38(7):1349–1368. <a href="https://doi.org/10.1007/s10571-018-0609-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10571-018-0609-2</a>
  2. Balandyté L, Brodard I, Frey J, Oevermann A, Abril C. Ruminant rhombencephalitis-associated Listeria monocytogenes alleles linked to a multilocus variable-number tandem-repeat analysis complex. Appl Environ Microbiol. 2011;77(23):8325–8335. <a href="https://doi.org/10.1128/AEM.06507-11" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/AEM.06507-11</a>
  3. Bu RE, Wang JL, Wu JH, Xilin GW, Chen JL, Wang H. Indirect enzyme-linked immunosorbent assay method based on Streptococcus agalactiae rSip-Pgk-FbsA fusion protein for detection of bovine mastitis. Pol J Vet Sci. 2017 Mar 1;20(2):355–362. <a href="https://doi.org/10.1515/pjvs-2017-0043" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1515/pjvs-2017-0043</a>
  4. Chandrashekar DS, Golonka RM, Yeoh BS, Gonzalez DJ, Heikenwälder M, Gerwirtz AT, Varambally S, Vijay-Kumar M. Fermentable fiber-induced hepatocellular carcinoma in mice recapitulates gene signatures found in human liver cancer. PLoS One. 2020 Jun 19;15(6):e0234726. <a href="https://doi.org/10.1371/journal.pone.0234726" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1371/journal.pone.0234726</a>
  5. Chen S, Meng F, Sun X, Yao H, Wang Y, Pan Z, Yin Y, Jiao X. Epidemiology of human listeriosis in China during 2008–2017. Foodborne Pathog Dis. 2020 Feb 01;17(2):119–125. <a href="https://doi.org/10.1089/fpd.2019.2683" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1089/fpd.2019.2683</a>
  6. Costa AC, Pinheiro J, Reis SA, Cabanes D, Sousa S. Listeria monocytogenes interferes with host cell mitosis through its virulence factors InlC and ActA. Toxins (Basel). 2020 Jun 20;12(6):411–415. <a href="https://doi.org/10.3390/toxins12060411" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/toxins12060411</a>
  7. Datta AR, Burall LS. Serotype to genotype: the changing landscape of listeriosis outbreak investigations. Food Microbiol. 2018 Oct;75:18–27. <a href="https://doi.org/10.1016/j.fm.2017.06.013" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.fm.2017.06.013</a>
  8. de las Heras A, Cain RJ, Bielecka MK, Vázquez-Boland JA. Regulation of Listeria virulence: PrfA master and commander. Curr Opin Microbiol. 2011 Apr;14(2):118–127. <a href="https://doi.org/10.1016/j.mib.2011.01.005" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.mib.2011.01.005</a>
  9. Dowd GC, Bahey-el-din M, Casey PG, Joyce SA, Hill C, Gahan CGM. Listeria monocytogenes mutants defective in gallbladder replication represent safety-enhanced vaccine delivery platforms. Hum Vaccin Immunother. 2016 Aug 02;12(8):2059–2063. <a href="https://doi.org/10.1080/21645515.2016.1154248" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/21645515.2016.1154248</a>
  10. Drolia R, Bhunia AK. Crossing the intestinal barrier via Listeria adhesion protein and internalin A. Trends Microbiol. 2019 May; 27(5):408–425. <a href="https://doi.org/10.1016/j.tim.2018.12.007" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.tim.2018.12.007</a>
  11. Gouin E, Balestrino D, Rasid O, Nahori MA, Villiers V, Impens F, Volant S, Vogl T, Jacob Y, Dussurget O, et al. Ubiquitination of Listeria virulence factor InlC contributes to the host response to infection. MBio. 2019 Dec 24;10(6):e02778–e19. <a href="https://doi.org/10.1128/mBio.02778-19" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/mBio.02778-19</a>
  12. Ireton K, Mortuza R, Gyanwali GC, Gianfelice A, Hussain M. Role of internalin proteins in the pathogenesis of Listeria monocytogenes. Mol Microbiol. 2021 Dec;116(6):1407–1419. <a href="https://doi.org/10.1111/mmi.14836" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/mmi.14836</a>
  13. Jia Y, Nightingale KK, Boor KJ, Ho A, Wiedmann M, McGann P. Distribution of internalin gene profiles of Listeria monocytogenes isolates from different sources associated with phylogenetic lineages. Foodborne Pathog Dis. 2007 Jun;4(2):222–232. <a href="https://doi.org/10.1089/fpd.2006.0081" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1089/fpd.2006.0081</a>
  14. Jianjun J. Disruption of InlC2 enhances the internalization of Listeria monocytogenes by epithelial cells. [PhD Thesis]. Shihezi (China): Shihezi University; 2011.
  15. Lecuit M. Listeria monocytogenes, a model in infection biology. Cell Microbiol. 2020 Apr;22(4):e13186. <a href="https://doi.org/10.1111/cmi.13186" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/cmi.13186</a>
  16. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019 Jul 02;47 W1:W199–W205. <a href="https://doi.org/10.1093/nar/gkz401" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/nar/gkz401</a>
  17. Liu Y, Sun W, Sun T, Gorris LGM, Wang X, Liu B, Dong Q. The prevalence of Listeria monocytogenes in meat products in China: A systematic literature review and novel meta-analysis approach. Int J Food Microbiol. 2020 Jan;312:108358. <a href="https://doi.org/10.1016/j.ijfoodmicro.2019.108358" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijfoodmicro.2019.108358</a>
  18. Matle I, Mbatha KR, Madoroba E. A review of Listeria monocytogenes from meat and meat products: Epidemiology, virulence factors, antimicrobial resistance and diagnosis. Onderstepoort J Vet Res. 2020 Oct 09;87(1):e1–e20. <a href="https://doi.org/10.4102/ojvr.v87i1.1869" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.4102/ojvr.v87i1.1869</a>
  19. Matsumoto H, Haniu H, Komori N. Determination of protein molecular weights on SDS-PAGE. Methods Mol Biol. 2019; 1855: 101–105. <a href="https://doi.org/10.1007/978-1-4939-8793-1_10" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/978-1-4939-8793-1_10</a>
  20. Medeiros M, Castro VHL, Mota ALAA, Pereira MG, De Martinis ECP, Perecmanis S, Santana AP. Assessment of internalin A gene sequences and cell adhesion and invasion capacity of Listeria monocytogenes strains isolated from foods of animal and related origins. Foodborne Pathog Dis. 2021 Apr 01;18(4):243–252. <a href="https://doi.org/10.1089/fpd.2020.2855" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1089/fpd.2020.2855</a>
  21. Mir SA. Structure and function of the important internalins of Listeria monocytogenes. Curr Protein Pept Sci. 2021 Dec 22;22(8): 620–628. <a href="https://doi.org/10.2174/1389203722666210902163300" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.2174/1389203722666210902163300</a>
  22. Mitchell G, Cheng MI, Chen C, Nguyen BN, Whiteley AT, Kianian S, Cox JS, Green DR, McDonald KL, Portnoy DA. Listeria monocytogenes triggers noncanonical autophagy upon phagocytosis, but avoids subsequent growth-restricting xenophagy. Proc Natl Acad Sci USA. 2018 Jan 09;115(2):E210–E217. <a href="https://doi.org/10.1073/pnas.1716055115" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1073/pnas.1716055115</a>
  23. Pereira MG, de Almeida OGG, da Silva HRA, Ishizawa MH, De Martinis ECP. Studies on host-foodborne bacteria in intestinal three-dimensional cell culture model indicate possible mechanisms of interaction. World J Microbiol Biotechnol. 2021 Feb;37(2):31. <a href="https://doi.org/10.1007/s11274-021-02996-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11274-021-02996-6</a>
  24. Pizarro-Cerdá J, Cossart P. Listeria monocytogenes: cell biology of invasion and intracellular growth. Microbiol Spectr. 2018 Nov 02;6(6):57–69. <a href="https://doi.org/10.1128/microbiolspec.GPP3-0013-2018" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/microbiolspec.GPP3-0013-2018</a>
  25. Radoshevich L, Cossart P. Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis. Nat Rev Microbiol. 2018 Jan;16(1):32–46. <a href="https://doi.org/10.1038/nrmicro.2017.126" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/nrmicro.2017.126</a>
  26. Wang Y, Lu L, Lan R, Salazar JK, Liu J, Xu J, Ye C. Isolation and characterization of Listeria species from rodents in natural environments in China. Emerg Microbes Infect. 2017 Jan 01;6(1):1–6. <a href="https://doi.org/10.1038/emi.2017.28" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1038/emi.2017.28</a>
  27. Yi Z, Xie J. Comparative proteomics reveals the spoilage-related factors of Shewanella putrefaciens under refrigerated condition. Front Microbiol. 2021 Dec 3;12:740482. <a href="https://doi.org/10.3389/fmicb.2021.740482" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2021.740482</a>
  28. Younis KM, Usup G, Ahmad A. Secondary metabolites produced by marine streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis. Environ Sci Pollut Res Int. 2016 Mar;23(5):4756–4767. <a href="https://doi.org/10.1007/s11356-015-5687-9" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s11356-015-5687-9</a>
DOI: https://doi.org/10.33073/pjm-2022-009 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 63 - 71
Submitted on: Nov 22, 2021
Accepted on: Feb 10, 2022
Published on: Mar 30, 2022
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Huitian Gou, Yuanyuan Liu, Wenjing Shi, Jinyu Nan, Chuan Wang, Yanan Sun, Qihang Cao, Huilin Wei, Chen Song, Changqing Tian, Yanquan Wei, Huiwen Xue, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.