Have a personal or library account? Click to login
A Salt-Tolerant Streptomyces paradoxus D2-8 from Rhizosphere Soil of Phragmites communis Augments Soybean Tolerance to Soda Saline-Alkali Stress Cover

A Salt-Tolerant Streptomyces paradoxus D2-8 from Rhizosphere Soil of Phragmites communis Augments Soybean Tolerance to Soda Saline-Alkali Stress

Open Access
|Mar 2022

References

  1. <bold>Abulfaraj AA, Jalal RS.</bold> Use of plant growth-promoting bacteria to enhance salinity stress in soybean (<em>Glycine max</em> L.) plants. Saudi J Biol Sci. 2021 Jul;28(7):3823–3834. <a href="https://doi.org/10.1016/j.sjbs.2021.03.053" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.sjbs.2021.03.053</a>
  2. <bold>Berg G, Marten P, Minkwitz A, Brückner S.</bold> Efficient biological control of plant fungal diseases by <em>Streptomyces</em> sp. DSMZ 12424. J Plant Dis Protect. 2001 Jan;108(1):1–10.
  3. <bold>Bhatti AA, Haq S, Bhat RA.</bold> Actinomycetes benefaction role in soil and plant health. Microb Pathog. 2017 Oct;111:458–467. <a href="https://doi.org/10.1016/j.micpath.2017.09.036" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.micpath.2017.09.036</a>
  4. <bold>Chatterton S, Punja ZK.</bold> Factors influencing colonization of cucumber roots by <em>Clonostachys rosea</em> f. catenulata, a biological disease control agent. Biocontrol Sci Technol. 2010;20(1):37–55. <a href="https://doi.org/10.1080/09583150903350253" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/09583150903350253</a>
  5. <bold>Costa-Gutierrez SB, Lami MJ, Santo MCC, Zenoff AM, Vincent PA, Molina-Henares MA, Espinosa-Urgel M, de Cristóbal RE.</bold> Plant growth promotion by <em>Pseudomonas putida</em> KT2440 under saline stress: role of <em>eptA</em>. Appl Microbiol Biotechnol. 2020 May;104(10): 4577–4592. <a href="https://doi.org/10.1007/s00253-020-10516-z" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s00253-020-10516-z</a>
  6. <bold>Gang S, Sharma S, Saraf M, Buck M, Schumacher J.</bold> Analysis of indole-3-acetic acid (IAA) production in <em>Klebsiella</em> by LC-MS/MS and the Salkowski method. Bio Protoc. 2019 May 5;9(9):e3230. <a href="https://doi.org/10.21769/BioProtoc.3230" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.21769/BioProtoc.3230</a>
  7. <bold>Guillot A, Obis D, Mistou MY.</bold> Fatty acid membrane composition and activation of glycine-betaine transport in <em>Lactococcus lactis</em> subjected to osmotic stress. Int J Food Microbiol. 2000 Apr 10;55(1–3): 47–51. <a href="https://doi.org/10.1016/s0168-1605(00)00193-8" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/s0168-1605(00)00193-8</a>
  8. <bold>Han D, Wang L, Luo Y.</bold> Isolation, identification, and the growth promoting effects of two antagonistic actinomycete strains from the rhizosphere of <em>Mikania micrantha</em> Kunth. Microbiol Res. 2018 Mar; 208:1–11. <a href="https://doi.org/10.1016/j.micres.2018.01.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.micres.2018.01.003</a>
  9. <bold>Han L, Zhang H, Xu Y, Li Y, Zhou J.</bold> Biological characteristics and salt-tolerant plant growth-promoting effects of an ACC deaminase-producing Burkholderia pyrrocinia strain isolated from the tea rhizosphere. Arch Microbiol. 2021 Jul; 203(5): 2279–2290. <a href="http://doi.org/10.1007/s00203-021-02204-x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">http://doi.org/10.1007/s00203-021-02204-x</a>.
  10. <bold>He C, Zheng L, Ding J, Gao W, Chi W, Ding Y.</bold> Complete genome sequence of an <em>N</em>-acyl homoserine lactone producer, <em>Breoghania</em> sp. strain L-A4, isolated from rhizosphere of <em>Phragmites australis</em> in a coastal wetland. Microbiol Resour Announc. 2019 Jan 31;8(5): e01539-18. <a href="https://doi.org/10.1128/MRA.01539-18" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/MRA.01539-18</a>
  11. <bold>Huang LH, Liang ZW, Suarez DL, Wang ZC, Wang MM, Yang HY, Liu M.</bold> Impact of cultivation year, nitrogen fertilization rate and irrigation water quality on soil salinity and soil nitrogen in saline-sodic paddy fields in Northeast China. J Agric Sci. 2016;154(04):632–646. <a href="https://doi.org/10.1017/S002185961500057X" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1017/S002185961500057X</a>
  12. <bold>Jiang Y, Cao YR, Wiese J, Tang SK, Xu LH, Imhoff JF, Jiang CL.</bold> <em>Streptomyces sparsus</em> sp. nov., isolated from a saline and alkaline soil. Int J Syst Evol Microbiol. 2011 Jul;61(7):1601–1605. <a href="https://doi.org/10.1099/ijs.0.020669-0" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1099/ijs.0.020669-0</a>
  13. <bold>Khan MA, Asaf S, Khan AL, Jan R, Kang SM, Kim KM, Lee IJ.</bold> <em>Rhizobacteria</em> AK1 remediates the toxic effects of salinity stress via regulation of endogenous phytohormones and gene expression in soybean. Biochem J. 2019 Aug 30;476(16):2393–2409. <a href="https://doi.org/10.1042/BCJ20190435" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1042/BCJ20190435</a>
  14. <bold>Killham K, Firestone MK.</bold> Salt stress control of intracellular solutes in streptomycetes indigenous to saline soils. Appl Environ Microbiol. 1984 Feb;47(2):301–306. <a href="https://doi.org/10.1128/aem.47.2.301-306.1984" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1128/aem.47.2.301-306.1984</a>
  15. <bold>Lahdenperä ML, Simon E, Uoti J.</bold> Mycostop – A novel biofungicide based on <em>Streptomyces</em> bacteria. In: Beemster ABR, Bollen GJ, Gerlagh M, Ruissen MA, Schippers B, Tempel A, editors. Developments in agricultural and managed forest ecology. Amsterdam (The Netherlands): Elsevier; 1991(23), p. 258–263. <a href="https://doi.org/10.1016/B978-0-444-88728-3.50048-2" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/B978-0-444-88728-3.50048-2</a>
  16. <bold>Liu D, Yan R, Fu Y, Wang X, Zhang J, Xiang W.</bold> Antifungal, plant growth-promoting, and genomic properties of an endophytic actinobacterium <em>Streptomyces</em> sp. NEAU-S7GS2. Front Microbiol. 2019 Sep 10;10:2077. <a href="https://doi.org/10.3389/fmicb.2019.02077" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3389/fmicb.2019.02077</a>
  17. <bold>Minuto A, Spadaro D, Garibaldi A, Gullino ML.</bold> Control of soil-borne pathogens of tomato using a commercial formulation of <em>Streptomyces griseoviridis</em> and solarization. Crop Prot. 2006;25(5):468–475. <a href="https://doi.org/10.1016/j.cropro.2005.08.001" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.cropro.2005.08.001</a>
  18. <bold>Newitt JT, Prudence SMM, Hutchings MI, Worsley SF.</bold> Biocontrol of cereal crop diseases using <em>Streptomycetes</em>. Pathogens. 2019 Jun 13; 8(2):78. <a href="https://doi.org/10.3390/pathogens8020078" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/pathogens8020078</a>
  19. <bold>Panda AK, Bisht SS, DeMondal S, Senthil Kumar N, Gurusubramanian G, Panigrahi AK.</bold> <em>Brevibacillus</em> as a biological tool: a short review. Antonie Van Leeuwenhoek. 2014 Apr;105(4):623–639. <a href="https://doi.org/10.1007/s10482-013-0099-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10482-013-0099-7</a>
  20. <bold>Pereira SI, Pires C, Henriques I, Correia A, Magan N, Castro PM.</bold> Assessment of rhizospheric culturable bacteria of <em>Phragmites australis</em> and <em>Juncus effusus</em> from polluted sites. J Basic Microbiol. 2015 Oct; 55(10):1179–1190. <a href="https://doi.org/10.1002/jobm.201500010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/jobm.201500010</a>
  21. <bold>Phang TH, Shao G, Lam HM.</bold> Salt tolerance in soybean. J Integr Plant Biol. 2008 Oct;50(10):1196–1212. <a href="https://doi.org/10.1111/j.1744-7909.2008.00760.x" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/j.1744-7909.2008.00760.x</a>
  22. <bold>Pul U, Wurm R, Wagner R.</bold> The role of LRP and H-NS in transcription regulation: involvement of synergism, allostery and macromolecular crowding. J Mol Biol. 2007 Feb 23;366(3):900–915. <a href="https://doi.org/10.1016/j.jmb.2006.11.067" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jmb.2006.11.067</a>
  23. <bold>Rajendrakumar CS, Suryanarayana T, Reddy AR.</bold> DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Lett. 1997 Jun 30;410(2–3):201–205. <a href="https://doi.org/10.1016/s0014-5793(97)00588-7" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/s0014-5793(97)00588-7</a>
  24. <bold>Rehan M, Alsohim AS, Abidou H, Rasheed Z, Al Abdulmonem W.</bold> Isolation, identification, biocontrol activity, and plant growth promoting capability of a superior <em>Streptomyces tricolor</em> strain HM10. Pol J Microbiol. 2021 Jun;70(2):245–256. <a href="https://doi.org/10.33073/pjm-2021-023" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.33073/pjm-2021-023</a>
  25. <bold>Sadeghi A, Soltani BM, Jouzani GS, Karimi E, Nekouei MK, Sadeghizadeh M.</bold> Taxonomic study of a salt tolerant <em>Streptomyces</em> sp. strain C-2012 and the effect of salt and ectoine on <em>lon</em> expression level. Microbiol Res. 2014 Feb–Mar;169(2–3):232–238. <a href="https://doi.org/10.1016/j.micres.2013.06.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.micres.2013.06.010</a>
  26. <bold>Thumar JT</bold>, <bold>Singh SP</bold>. Organic solvent tolerance of an alkaline protease from salt-tolerant alkaliphilic <em>Streptomyces clavuligerus</em> strain Mit-1. J Ind Microbiol Biotechnol. 2009 Feb;36(2):211–218. <a href="https://doi.org/10.1007/s10295-008-0487-6" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1007/s10295-008-0487-6</a>
  27. <bold>Vasavada SH, Thumar, JT, Singh SP.</bold> Secretion of a potent antibiotic by salt-tolerant and alkaliphilic actinomycete <em>Streptomyces sannanensis</em> strain RIT-1. Curr Sci. 2006 Nov;91(10):1393–1397.
  28. <bold>Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W, et al.</bold> antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015 Jul 1;43(W1):W237–W243. <a href="https://doi.org/10.1093/nar/gkv437" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1093/nar/gkv437</a>
  29. <bold>Zeng W, Wang D, Kirk W, Hao J.</bold> Use of <em>Coniothyrium minitans</em> and other microorganisms for reducing <em>Sclerotinia sclerotiorum</em>. Biol. Control. 2012 Feb;60(2):225–232. <a href="https://doi.org/10.1016/j.biocontrol.2011.10.009" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.biocontrol.2011.10.009</a>
  30. <bold>Zhang L, Hashimoto T, Qin B, Hashimoto J, Kozone I, Kawahara T, Okada M, Awakawa T, Ito T, Asakawa Y, et al.</bold> Characterization of giant modular PKSs provides insight into genetic mechanism for structural diversification of aminopolyol polyketides. Angew Chem Int Ed Engl. 2017 Feb 6;56(7):1740–1745. <a href="https://doi.org/10.1002/anie.201611371" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1002/anie.201611371</a>
  31. <bold>Zörb C, Geilfus C M, Dietz K J.</bold> Salinity and crop yield. Plant Biol J. 2019 Jan;21(Suppl 1):31–38. <a href="https://doi.org/10.1111/plb.12884" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1111/plb.12884</a>
DOI: https://doi.org/10.33073/pjm-2022-006 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 43 - 53
Submitted on: Dec 10, 2021
Accepted on: Jan 21, 2022
Published on: Mar 14, 2022
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2022 Yamei Gao, Yiqiang Han, Xin Li, Mingyang Li, Chunxu Wang, Zhiwen Li, Yanjie Wang, Weidong Wang, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.