Have a personal or library account? Click to login
A Novel LysR Family Factor STM0859 is Associated with The Responses of Salmonella Typhimurium to Environmental Stress and Biofilm Formation Cover

A Novel LysR Family Factor STM0859 is Associated with The Responses of Salmonella Typhimurium to Environmental Stress and Biofilm Formation

Open Access
|Dec 2021

References

  1. Borges KA, Furian TQ, Souza SN, Menezes R, Lima DA, Fortes FB, Salle CT, Moraes HL, Nascimento VP. Biofilm formation by Salmonella Enteritidis and Salmonella Typhimurium isolated from avian sources is partially related with their in vivo pathogenicity. Microb Pathog. 2018 May;118:238–241. https://doi.org/10.1016/j.micpath.2018.03.039
  2. Eran Z, Akçelik M, Yazıcı BC, Özcengiz G, Akçelik N. Regulation of biofilm formation by marT in Salmonella Typhimurium. Mol Biol Rep. 2020 Jul;47(7):5041–5050. https://doi.org/10.1007/s11033-020-05573-6
  3. Fragel SM, Montada A, Heermann R, Baumann U, Schacherl, MSchnetz K. Characterization of the pleiotropic LysR-type transcription regulator Leu0 of Escherichia coli. Nucleic Acids Res. 2019 Aug 22;47(14):7363–7379. https://doi.org/10.1093/nar/gkz506
  4. Fu Y, Cai Q, Wang Y, Li W, Yu J, Yang G, Lin W, Lin X. Four LysR-type transcriptional regulator family proteins (LTTRs) involved in antibiotic resistance in Aeromonas hydrophila. World J Microbiol Biotechnol. 2019 Aug 2;35(8):127. https://doi.org/10.1007/s11274-019-2700-3
  5. Gebhardt MJ, Czyz DM, Singh S, Zurawski DV, Becker L, Shuman HA. GigC, a LysR family transcription regulator, is required for cysteine metabolism and virulence in Acinetobacter baumannii. Infect Immun. 2020 Dec 15;89(1):e00180-20. https://doi.org/10.1128/IAI.00180-20
  6. Jajere SM. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet World. 2019; 12(4): 504–521. https://doi.org/10.14202/vetworld.2019.504-521
  7. Kim SI, Ryu S, Yoon H. Roles of YehZ, a putative osmoprotectant transporter, in tempering growth of Salmonella enterica serovar Typhimurium. J Microbiol Biotechnol. 2013 Nov 28;23(11):1560–1568. https://doi.org/10.4014/jmb.1308.08006
  8. Knudsen GM, Nielsen MB, Thomsen LE, Aabo S, Rychlik I, Olsen JE. The role of ClpP, RpoS and CsrA in growth and filament formation of Salmonella enterica serovar Typhimurium at low temperature. BMC Microbiol. 2014 Aug 14;14:208. https://doi.org/10.1186/s12866-014-0208-4
  9. Kenney LJ. The role of acid stress in Salmonella pathogenesis. Curr Opin Microbiol. 2019 Feb;47:45–51. https://doi.org/10.1016/j.mib.2018.11.006
  10. Leclerc JM, Dozois CM, Daigle F. Salmonella enterica serovar Typhi siderophore production is elevated and Fur inactivation causes cell filamentation and attenuation in macrophages. FEMS Microbiol Lett. 2017 Aug 15;364(15). https://doi.org/10.1093/femsle/fnx147
  11. Lehti TA, Heikkinen J, Korhonen TK, Westerlund-Wikström B. The response regulator RcsB activates expression of Mat fimbriae in meningitic Escherichia col. J Bacteriol. 2012 Jul;194(13):3475–3485. https://doi.org/10.1128/JB.06596-11
  12. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001 Dec;25(4):402–408. https://doi.org/10.1006/meth.2001
  13. Lang C, Zhang Y, Mao Y, Yang X, Wang X, Luo X, Dong P, Zhu L. Acid tolerance response of Salmonella during simulated chilled beef storage and its regulatory mechanism based on the PhoP/Q system. Food Microbiol. 2021 May;95:103716. https://doi.org/10.1016/j.fm.2020.103716
  14. Peng Y, Meng Q, Qiao J, Xie K, Chen C, Liu T, Hu Z, Ma Y, Cai X, Chen C. The regulatory roles of ncRNA Rli60 in adaptability of Listeria monocytogenes to environmental stress and biofilm formation. Curr Microbiol. 2016 Jul;73(1):77–83. https://doi.org/10.1007/s00284-016-1028-6
  15. Richardson KE, Cox NA, Cosb DE, Berrang ME. Impact of desiccation and heat exposure stress on Salmonella tolerance to acidic conditions. J Environ Sci Health B. 2018 Feb;53(2):141–144. https://doi.org/10.1080/03601234.2017.1397467
  16. Rohren M, Xie Y, O’Leary C, Kongari R, Gill J, Liu M. Complete genome sequence of Salmonella enterica serovar Typhimurium siphophage Skate. Microbiol Resour Announc. 2019 Jul;8(27): e00541-19. https://doi.org/10.1128/MRA.00541-19
  17. Ramachandran G, Aheto K, Shirtliff ME, Tennant SM. Poor biofilm-forming ability and long-term survival of invasive Salmonella Typhimurium ST313. Pathog Dis. 2016 Jul;74(5):ftw049. https://doi.org/10.1093/femspd/ftw049
  18. Suar M, Ryan D. Small RNA in the acid tolerance response of Salmonella and their role in virulence. Virulence. 2015;6(2):105–106. https://doi.org/10.4161/21505594.2014.988543
  19. Song X, Zhang H, Liu X, Yuan J, Wang P, Lv R, Yang B, Huang D, Jiang L. The putative transcriptional regulator STM14_3563 facilitates Salmonella Typhimurium pathogenicity by activating virulence-related genes. Int Microbiol. 2020 Aug; 23(3):381–390. https://doi.org/10.1007/s10123-019-00110-3
  20. Srinivasan VB, Mondal A, Venkataramaiah M, Chauhan NK, Rajamohan G. Role of oxyRKP, a novel LysR-family transcriptional regulator in antimicrobial resistance and virulence in Klebsiella pneumoniae. Microbiology. 2013 Jul; 159(Pt_7):1301–1314. https://doi.org/10.1099/mic.0.065052-0
  21. Yang W, Wang WY, Zhao W, Cheng JG, Wang Y, Yao XP, Yang ZX, Yu D, Luo Y. Preliminary study on the role of novel LysR family gene kp05372 in Klebsiella pneumoniae of forest musk deer. J. Zhejiang Univ Sci B. 2020 Feb;21(2):137–154. https://doi.org/10.1631/jzus.B1900440
  22. Zhang H, Song X, Lv R, Liu X, Wang P, Jiang L. The LysR-type transcriptional regulator STM0030 contributes to Salmonella Typhimurium growth in macrophages and virulence in mice. J Basic Microbiol. 2019 Nov;59(11):1143–1153. https://doi.org/10.1002/jobm.201900315
  23. Zhao B, Houry WA. Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survival. Biochem Cell Biol. 2010 Apr;88(2):301–314. https://doi.org/10.1139/o09-182
DOI: https://doi.org/10.33073/pjm-2021-045 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 479 - 487
Published on: Dec 20, 2021
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 ZHONGMEI MA, NA LI, CHENGCHENG NING, YUCHENG LIU, YUN GUO, CHUNHUI JI, XIAOZHEN ZHU, QINGLING MENG, XIANZHU XIA, XINGXING ZHANG, XUEPENG CAI, KUOJUN CAI, QIAO JUN, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.