Al Abdulmonem W, Rasheed Z, Aljohani ASM, Omran OM, Rasheed N, Alkhamiss A, A M Al Salloom A, Alhumaydhi F, Alblihed MA, Al Ssadh H et al. Absence of CD74 isoform at 41kDa prevents the heterotypic associations between CD74 and CD44 in human lung adenocarcinoma-derived cells. Immunol Invest. 2020 Jul 9:1–15. https://doi.org/10.1080/08820139.2020.1790594
Anderson AS, Wellington EM. The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol. 2001 May 01;51(3):797–814. https://doi.org/10.1099/00207713-51-3-797
Anwar S, Ali B, Sajid I. Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Front Microbiol. 2016 Aug 29;7:1334–1334. https://doi.org/10.3389/fmicb.2016.01334
Bano N, Musarrat J. Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol. 2003 May 1;46(5):324–328. https://doi.org/10.1007/s00284-002-3857-8
Bonaldi M, Kunova A, Saracchi M, Sardi P, Cortesi P. Streptomycetes as biological control agents against basal drop. Acta Hortic. 2014;1044:313–318. https://doi.org/10.17660/ActaHortic.2014.1044.40
Boukaew S, Chuenchit S, Petcharat V. Evaluation of Streptomyces spp. for biological control of Sclerotium root and stem rot and Ralstonia wilt of chili pepper. BioControl. 2011 Jun;56(3):365–374. https://doi.org/10.1007/s10526-010-9336-4
Brauer VS, Rezende CP, Pessoni AM, De Paula RG, Rangappa KS, Nayaka SC, Gupta VK, Almeida F. Antifungal agents in agriculture: friends and foes of public health. Biomolecules. 2019 Sep 23; 9(10):521. https://doi.org/10.3390/biom9100521
CLSI. M100-S21 performance standards for antimicrobial susceptibility testing; twenty-first informational supplement. Wayne (USA): The Clinical Laboratory and Standards Institute; 2011.
Cook AE, Meyers PR. Rapid identification of filamentous actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. Int J Syst Evol Microbiol. 2003 Nov 01;53(6):1907–1915. https://doi.org/10.1099/ijs.0.02680-0
Donate-Correa J, León-Barrios M, Pérez-Galdona R. Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil. 2005 Jan;266(1–2):261–272. https://doi.org/10.1007/s11104-005-0754-5
Doumbou CL, Hamby Salove MK, Crawford DL, Beaulieu C. Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection. 2001;82(3):85–102. https://doi.org/10.7202/706219ar
Duan Y, Chen J, He W, Chen J, Pang Z, Hu H, Xie J. Fermentation optimization and disease suppression ability of a Streptomyces ma. FS-4 from banana rhizosphere soil. BMC Microbiol. 2020 Dec; 20(1):24. https://doi.org/10.1186/s12866-019-1688-z
El-Abyad MS, El-Sayed MA, El-Shanshoury AR, El-Sabbagh SM. Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp. Plant Soil. 1993 Feb; 149(2):185–195. https://doi.org/10.1007/BF00016608
El-Naggar MY, El-Assar SA, Abdul-Gawad SM. Meroparamycin production by newly isolated Streptomyces sp. strain MAR01: taxonomy, fermentation, purification and structural elucidation. J Microbiol. 2006 Aug;44(4):432–438.
Evangelista-Martínez Z. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens. World J Microbiol Biotechnol. 2014 May; 30(5):1639–1647. https://doi.org/10.1007/s11274-013-1568-x
Expert D, Franza T, Dellagi A. Iron in plant-pathogen interactions. In: Expert D, O’Brian M, editors. Molecular aspects of iron metabolism in pathogenic and symbiotic plant-microbe associations. Dordrecht (Netherlands): Springer; 2012. p. 7–39. https://doi.org/10.1007/978-94-007-5267-22
González-García S, Álvarez-Pérez JM, Sáenz de Miera LE, Cobos R, Ibañez A, Díez-Galán A, Garzón-Jimeno E, Coque JJR. Developing tools for evaluating inoculation methods of biocontrol Streptomyces sp. strains into grapevine plants. PLoS One. 2019 Jan 24; 14(1):e0211225. https://doi.org/10.1371/journal.pone.0211225
Ji SH, Gururani MA, Chun SC. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiol Res. 2014 Jan 20;169(1):83–98. https://doi.org/10.1016/j.micres.2013.06.003
Jin N, Lu X, Wang X, Liu Q, Peng D, Jian H. The effect of combined application of Streptomyces rubrogriseus HDZ-9-47 with soil biofumigation on soil microbial and nematode communities. Sci Rep. 2019 Dec;9(1):16886. https://doi.org/10.1038/s41598-019-52941-9
Jung SJ, Kim NK, Lee DH, Hong SI, Lee JK. Screening and evaluation of Streptomyces species as a potential biocontrol agent against a wood, decay fungus, Gloeophyllum trabeum. Mycobiology. 2018 Apr 03;46(2):138–146. https://doi.org/10.1080/12298093.2018.1468056
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol. 2018 Jun 01;35(6):1547–1549. https://doi.org/10.1093/molbev/msy096
Kunova A, Bonaldi M, Saracchi M, Pizzatti C, Chen X, Cortesi P. Selection of Streptomyces against soil borne fungal pathogens by a standardized dual culture assay and evaluation of their effects on seed germination and plant growth. BMC Microbiol. 2016 Dec; 16(1):272. https://doi.org/10.1186/s12866-016-0886-1
Law JWF, Ser HL, Khan TM, Chuah LH, Pusparajah P, Chan KG, Goh BH, Lee LH. The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Front Microbiol. 2017 Jan 17;8:3. https://doi.org/10.3389/fmicb.2017.00003
Liu D, Anderson NA, Kinkel LL. Selection and characterization of strains of Streptomyces suppressive to the potato scab pathogen. Can J Microbiol. 1996 May 01;42(5):487–502. https://doi.org/10.1139/m96-066
Liu D, Yan R, Fu Y, Wang X, Zhang J, Xiang W. Antifungal, plant growth-promoting, and genomic properties of an endophytic Actinobacterium Streptomyces sp. NEAU-S7GS2. Front Microbiol. 2019 Sep 10;10:2077. https://doi.org/10.3389/fmicb.2019.02077
Myo EM, Ge B, Ma J, Cui H, Liu B, Shi L, Jiang M, Zhang K. Indole-3-acetic acid production by Streptomyces fradiae NKZ-259 and its formulation to enhance plant growth. BMC Microbiol. 2019 Dec;19(1):155. https://doi.org/10.1186/s12866-019-1528-1
Newitt J, Prudence S, Hutchings M, Worsley S. Biocontrol of cereal crop diseases using Streptomycetes. Pathogens. 2019 Jun 13;8(2):78. https://doi.org/10.3390/pathogens8020078
Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health. 2016 Jul 18;4:148. https://doi.org/10.3389/fpubh.2016.00148
Palaniyandi SA, Yang SH, Zhang L, Suh JW. Effects of Actinobacteria on plant disease suppression and growth promotion. Appl Microbiol Biotechnol. 2013 Nov;97(22):9621–9636. https://doi.org/10.1007/s00253-013-5206-1
Prapagdee B, Kuekulvong C, Mongkolsuk S. Antifungal potential of extracellular metabolites produced by Streptomyces hygroscopicus against phytopathogenic fungi. Int J Biol Sci. 2008;4(5):330–337. https://doi.org/10.7150/ijbs.4.330
Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H. Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microbiol Biotechnol. 2012 Apr;28(4):1503–1509. https://doi.org/10.1007/s11274-011-0952-7
Salah El-Din Mohamed W, Zaki DFA. Evaluation of antagonistic actinomycetes isolates as biocontrol agents against wastewater-associated bacteria. Water Sci Technol. 2019 Jun 15;79(12):2310–2317. https://doi.org/10.2166/wst.2019.231
Schrey SD, Erkenbrack E, Früh E, Fengler S, Hommel K, Horlacher N, Schulz D, Ecke M, Kulik A, Fiedler HP, et al. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated Streptomycetes. BMC Microbiol. 2012;12(1):164. https://doi.org/10.1186/1471-2180-12-164
Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987 Jan; 160(1):47–56. https://doi.org/10.1016/0003-2697(87)90612-9
Seipke RF, Kaltenpoth M, Hutchings MI. Streptomyces as symbionts: an emerging and widespread theme? FEMS Microbiol Rev. 2012 Jul;36(4):862–876. https://doi.org/10.1111/j.1574-6976.2011.00313.x
Suárez-Moreno ZR, Vinchira-Villarraga DM, Vergara-Morales DI, Castellanos L, Ramos FA, Guarnaccia C, Degrassi G, Venturi V, Moreno-Sarmiento N. Plant-growth promotion and biocontrol properties of three Streptomyces spp. isolates to control bacterial rice pathogens. Front Microbiol. 2019 Feb 25;10:290. https://doi.org/10.1016/10.3389/fmicb.2019.00290
Takahashi Y, Nakashima T. Actinomycetes, an inexhaustible source of naturally occurring antibiotics. Antibiotics (Basel). 2018 May 24;7(2):45. https://doi.org/10.3390/antibiotics7020045
Trejo-Estrada SR, Sepulveda IR, Crawford DL. In vitro and in vivo antagonism of Streptomyces violaceusniger YCED9 against fungal pathogens of turfgrass. World J Microbiol Biotechnol. 1998; 14(6):865–872. https://doi.org/10.1023/A:1008877224089
Valan Arasu M, Duraipandiyan V, Agastian P, Ignacimuthu S. In vitro antimicrobial activity of Streptomyces spp. ERI-3 isolated from Western Ghats rock soil (India). J Mycol Med. 2009 Mar;19(1):22–28. https://doi.org/10.1016/j.mycmed.2008.12.002
Vurukonda SSKP, Giovanardi D, Stefani E. Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci. 2018 Mar 22;19(4):952. https://doi.org/10.3390/ijms19040952
Wang C, Wang Y, Ma J, Hou Q, Liu K, Ding Y, Du B. Screening and whole-genome sequencing of two Streptomyces species from the rhizosphere soil of peony reveal their characteristics as plant growth-promoting Rhizobacteria. Biomed Res Int. 2018 Sep 05;2018:1–11. https://doi.org/10.1155/2018/2419686
Yekkour A, Sabaou N, Zitouni A, Errakhi R, Mathieu F, Lebrihi A. Characterization and antagonistic properties of Streptomyces strains isolated from Saharan soils, and evaluation of their ability to control seedling blight of barley caused by Fusarium culmorum. Lett Appl Microbiol. 2012 Dec;55(6):427–435. https://doi.org/10.1111/j.1472-765x.2012.03312.x