Have a personal or library account? Click to login
Antibiotic and Disinfectant Resistance in Tap Water Strains – Insight into the Resistance of Environmental Bacteria Cover

Antibiotic and Disinfectant Resistance in Tap Water Strains – Insight into the Resistance of Environmental Bacteria

Open Access
|Mar 2021

References

  1. Aber RC, Wennersten C, Moellering RC Jr. Antimicrobial susceptibility of flavobacteria. Antimicrob Agents Chemother. 1978 Sep 01;14(3):483–487. https://doi.org/10.1128/AAC.14.3.483
  2. Almuzara M, Limansky A, Ballerini V, Galanternik L, Famiglietti A, Vay C. In vitro susceptibility of Achromobacter spp. isolates: comparison of disk diffusion, Etest and agar dilution methods. Int J Antimicrob Agents. 2010 Jan;35(1):68–71. https://doi.org/10.1016/j.ijantimicag.2009.08.015
  3. Bai X, Ma X, Xu F, Li J, Zhang H, Xiao X. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance. Sci Total Environ. 2015 Nov;533:24–31. https://doi.org/10.1016/j.scitotenv.2015.06.082
  4. Baquero F, Martínez JL, Cantón R. Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol. 2008 Jun; 19(3):260–265. https://doi.org/10.1016/j.copbio.2008.05.006
  5. Berglund B. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol Epidemiol. 2015 Jan;5(1):28564. https://doi.org/10.3402/iee.v5.28564
  6. Chen FL, Wang GC, Teng SO, Ou TY, Yu FL, Lee WS. Clinical and epidemiological features of Chryseobacterium indologenes infections: analysis of 215 cases. J Microbiol Immunol Infect. 2013b Dec;46(6):425–432. https://doi.org/10.1016/j.jmii.2012.08.007
  7. Chen L, Jiang F, Xiao M, Dai J, Kan W, Fang C, Peng F. Dyadobacter arcticus sp. nov., isolated from Arctic soil. Int J Syst Evol Microbiol. 2013a May 01;63(Pt_5):1616–1620. https://doi.org/10.1099/ijs.0.044198-0
  8. Chiao TH, Clancy TM, Pinto A, Xi C, Raskin L. Differential resistance of drinking water bacterial populations to monochloramine disinfection. Environ Sci Technol. 2014 Apr;48(7):4038–4047. https://doi.org/10.1021/es4055725
  9. ESAC-Net. [Internet]. European Surveillance of Antimicrobial Consumption Network; 2020 [cited 2020 Oct 12]. Available from https://www.ecdc.europa.eu/en/about-us/partnerships-and-networks/disease-and-laboratory-networks/esac-net
  10. EUCAST. Växjö (Sweden): The European Committee on Antimicrobial Susceptibility Testing; 2020 [cited 2020 Oct 12]. Available from https://www.eucast.org/
  11. Falagas ME, Karageorgopoulos DE. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli: need for international harmonization in terminology. Clin Infect Dis. 2008 Apr;46(7):1121–1122. https://doi.org/10.1086/528867
  12. Falcone-Dias MF, Vaz-Moreira I, Manaia CM. Bottled mineral water as a potential source of antibiotic resistant bacteria. Water Res. 2012 Jul;46(11):3612–3622. https://doi.org/10.1016/j.watres.2012.04.007
  13. Figueira V, Serra EA, Vaz-Moreira I, Brandão TRS, Manaia CM. Comparison of ubiquitous antibiotic-resistant Enterobacteriaceae populations isolated from wastewaters, surface waters and drinking waters. J Water Health. 2012 Mar 01;10(1):1–10. https://doi.org/10.2166/wh.2011.002
  14. Flores Ribeiro A, Bodilis J, Alonso L, Buquet S, Feuilloley M, Dupont JP, Pawlak B. Occurrence of multi-antibiotic resistant Pseudomonas spp. in drinking water produced from karstic hydrosystems. Sci Total Environ. 2014 Aug;490:370–378. https://doi.org/10.1016/j.scitotenv.2014.05.012
  15. Furuhata K, Kato Y, Goto K, Hara M, Yoshida S, Fukuyama M. Isolation and identification of Methylobacterium species from the tap water in hospitals in Japan and their antibiotic susceptibility. Microbiol Immunol. 2006 Jan;50(1):11–17. https://doi.org/10.1111/j.1348-0421.2006.tb03765.x
  16. Furuhata K, Kato Y, Goto K, Saitou K, Sugiyama JI, Hara M, Fukuyama M. Identification of yellow-pigmented bacteria isolated from hospital tap water in Japan and their chlorine resistance. Biocontrol Sci. 2007;12(2):39–46. https://doi.org/10.4265/bio.12.39
  17. Gneiding K, Frodl R, Funke G; Encountered in Human Clinical Specimens. Identities of Microbacterium spp. encountered in human clinical specimens. J Clin Microbiol. 2008 Nov 01;46(11):3646–3652. https://doi.org/10.1128/JCM.01202-08
  18. Hashemi-Shahraki A, Heidarieh P, Bostanabad SZ, Hashemzadeh M, Feizabadi MM, Schraufnagel D, Mirsaeidi M. Genetic diversity and antimicrobial susceptibility of Nocardia species among patients with nocardiosis. Sci Rep. 2015 Dec;5(1):17862. https://doi.org/10.1038/srep17862
  19. Hiraishi A, Furuhata K, Matsumoto A, Koike KA, Fukuyama M, Tabuchi K. Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl Environ Microbiol. 1995;61(6):2099–2107. https://doi.org/10.1128/AEM.61.6.2099-2107.1995
  20. Khan H, Miao X, Liu M, Ahmad S, Bai X. Behavior of last resort antibiotic resistance genes (mcr-1 and blaNDM-1) in a drinking water supply system and their possible acquisition by the mouse gut flora. Environ Pollut. 2020 Apr;259:113818. https://doi.org/10.1016/j.envpol.2019.113818
  21. Khan S, Beattie TK, Knapp CW. Relationship between antibiotic- and disinfectant-resistance profiles in bacteria harvested from tap water. Chemosphere. 2016a Jun;152:132–141. https://doi.org/10.1016/j.chemosphere.2016.02.086
  22. Khan S, Knapp CW, Beattie TK. Antibiotic resistant bacteria found in municipal drinking water. Environ Process. 2016b Sep;3(3):541–552. https://doi.org/10.1007/s40710-016-0149-z
  23. Kim DJ, King JA, Zuccarelli L, Ferris CF, Koppel GA, Snowdon CT, Ahn CH. Clavulanic acid: A competitive inhibitor of beta-lactamases with novel anxiolytic-like activity and minimal side effects. Pharmacol Biochem Behav. 2009 Aug;93(2):112–120. https://doi.org/10.1016/j.pbb.2009.04.013
  24. Kirby JT, Sader HS, Walsh TR, Jones RN. Antimicrobial susceptibility and epidemiology of a worldwide collection of Chryseobacterium spp.: report from the SENTRY Antimicrobial Surveillance Program (1997–2001). J Clin Microbiol. 2004 Jan 01;42(1):445–448. https://doi.org/10.1128/JCM.42.1.445-448.2004
  25. Kumari H, Gupta SK, Jindal S, Katoch P, Lal R. Sphingobium lactosutens sp. nov., isolated from a hexachlorocyclohexane dump site and Sphingobium abikonense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol. 2009 Sep 01;59(9):2291–2296. https://doi.org/10.1099/ijs.0.004739-0
  26. La Scola B, Mallet MN, Grimont PAD, Raoult D. Bosea eneae sp. nov., Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov., isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996). Int J Syst Evol Microbiol. 2003 Jan 01;53(1):15–20. https://doi.org/10.1099/ijs.0.02127-0
  27. Leginowicz M, Siedlecka A, Piekarska K. Biodiversity and antibiotic resistance of bacteria isolated from tap water in Wrocław, Poland. Environ Prot Eng. 2018;44(4):85–98. https://doi.org/10.37190/epe180406
  28. Lin W, Zhang M, Zhang S, Yu X. Can chlorination co-select antibiotic-resistance genes? Chemosphere. 2016 Aug;156:412–419. https://doi.org/10.1016/j.chemosphere.2016.04.139
  29. Liu Y, Lai Q, Du J, Shao Z. Bacillus zhangzhouensis sp. nov. and Bacillus australimaris sp. nov. Int J Syst Evol Microbiol. 2016 Mar 01;66(3):1193–1199. https://doi.org/10.1099/ijsem.0.000856
  30. Loch TP, Faisal M. Emerging flavobacterial infections in fish: A review. J Adv Res. 2015 May;6(3):283–300. https://doi.org/10.1016/j.jare.2014.10.009
  31. Ma L, Li B, Jiang XT, Wang YL, Xia Y, Li AD, Zhang T. Catalogue of antibiotic resistome and host-tracking in drinking water deciphered by a large scale survey. Microbiome. 2017 Dec;5(1):154. https://doi.org/10.1186/s40168-017-0369-0
  32. Martinez JL. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Biol Sci. 2009 Jul 22;276(1667):2521–2530. https://doi.org/10.1098/rspb.2009.0320
  33. Maurin M, Lepocher H, Mallet D, Raoult D. Antibiotic susceptibilities of Afipia felis in axenic medium and in cells. Antimicrob Agents Chemother. 1993 Jul 01;37(7):1410–1413. https://doi.org/10.1128/AAC.37.7.1410
  34. McTaggart LR, Doucet J, Witkowska M, Richardson SE. Antimicrobial susceptibility among clinical Nocardia species identified by multilocus sequence analysis. Antimicrob Agents Chemother. 2015 Jan;59(1):269–275. https://doi.org/10.1128/AAC.02770-14
  35. Michel C, Matte-Tailliez O, Kerouault B, Bernardet JF. Resistance pattern and assessment of phenicol agents’ minimum inhibitory concentration in multiple drug resistant Chryseobacterium isolates from fish and aquatic habitats. J Appl Microbiol. 2005 Aug;99(2):323–332. https://doi.org/10.1111/j.1365-2672.2005.02592.x
  36. Narciso-da-Rocha C, Vaz-Moreira I, Manaia CM. Genotypic diversity and antibiotic resistance in Sphingomonadaceae isolated from hospital tap water. Sci Total Environ. 2014 Jan;466-467:127–135. https://doi.org/10.1016/j.scitotenv.2013.06.109
  37. Narciso-da-Rocha C, Vaz-Moreira I, Svensson-Stadler L, Moore ERB, Manaia CM. Diversity and antibiotic resistance of Acinetobacter spp. in water from the source to the tap. Appl Microbiol Biotechnol. 2013 Jan;97(1):329–340. https://doi.org/10.1007/s00253-012-4190-1
  38. Ogbonne FC, Osegbo AN, Nwokwu CP, Ukazu ER, Egbe FC, Akhiromen DI, Aguta OJ. Genotypic characterization and resistance patterns of Flavobacterium columnare from pond-cultured Clarias gariepinus. Middle East J Appl Sci Technol. 2019;2(1):54–61.
  39. Proctor CR, Hammes F. Drinking water microbiology – from measurement to management. Curr Opin Biotechnol. 2015 Jun;33:87–94. https://doi.org/10.1016/j.copbio.2014.12.014
  40. Pruden A, Pei R, Storteboom H, Carlson KH. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ Sci Technol. 2006 Dec;40(23):7445–7450. https://doi.org/10.1021/es060413l
  41. Pruden A. Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Environ Sci Technol. 2014 Jan 07;48(1):5–14. https://doi.org/10.1021/es403883p
  42. Roberts SC, Zembower TR. Global increases in antibiotic consumption: a concerning trend for WHO targets. Lancet Infect Dis. 2021 Jan;21(1):10–11. https://doi.org/10.1016/S1473-3099(20)30456-4
  43. Ryan MP, Pembroke JT. Brevundimonas spp: emerging global opportunistic pathogens. Virulence. 2018 Dec 31;9(1):480–493. https://doi.org/10.1080/21505594.2017.1419116
  44. Salyers A, Gupta A, Wang Y. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 2004 Sep; 12(9):412–416. https://doi.org/10.1016/j.tim.2004.07.004
  45. Sanganyado E, Gwenzi W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Sci Total Environ. 2019 Jun;669:785–797. https://doi.org/10.1016/j.scitotenv.2019.03.162
  46. Saticioglu IB, Duman M, Smith P, Wiklund T, Altun S. Antimicrobial resistance and resistance genes in Flavobacterium psychrophilum isolates from Turkey. Aquaculture. 2019 Oct;512:734293. https://doi.org/10.1016/j.aquaculture.2019.734293
  47. Schlaberg R, Fisher MA, Hanson KE. Susceptibility profiles of Nocardia isolates based on current taxonomy. Antimicrob Agents Chemother. 2014 Feb;58(2):795–800. https://doi.org/10.1128/AAC.01531-13
  48. Senozan EA, Adams DJ, Giamanco NM, Warwick AB, Eberly MD. A catheter-related bloodstream infection with Mycobacterium frederiksbergense in an immunocompromised child. Pediatr Infect Dis J. 2015 Apr;34(4):445–447. https://doi.org/10.1097/INF.0000000000000563
  49. Shi P, Jia S, Zhang XX, Zhang T, Cheng S, Li A. Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Res. 2013 Jan;47(1):111–120. https://doi.org/10.1016/j.watres.2012.09.046
  50. Shrivastava R, Upreti RK, Jain SR, Prasad KN, Seth PK, Chaturvedi UC. Suboptimal chlorine treatment of drinking water leads to selection of multidrug-resistant Pseudomonas aeruginosa. Ecotoxicol Environ Saf. 2004 Jun;58(2):277–283. https://doi.org/10.1016/S0147-6513(03)00107-6
  51. Siedlecka A, Wolf-Baca M, Piekarska K. Spatiotemporal changes of antibiotic resistance and bacterial communities in drinking water distribution system in Wrocław, Poland. Water. 2020b Sep 17;12(9):2601. https://doi.org/10.3390/w12092601
  52. Siedlecka A, Wolf-Baca M, Pierkarska K. Seasonal variabilitiy of antibiotic resistance and biodiversity of tap water bacteria in Wrocław, Poland. Environ Prot Eng. 2020a;46(2):93–109. https://doi.org/10.37190/epe200207
  53. Stokes HW, Gillings MR. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev. 2011 Sep;35(5):790–819. https://doi.org/10.1111/j.1574-6976.2011.00273.x
  54. Tang Y, Dai J, Zhang L, Mo Z, Wang Y, Li Y, Ji S, Fang C, Zheng C. Dyadobacter alkalitolerans sp. nov., isolated from desert sand. Int J Syst Evol Microbiol. 2009 Jan 01;59(1):60–64. https://doi.org/10.1099/ijs.0.001404-0
  55. Vaz-Moreira I, Nunes OC, Manaia CM. Bacterial diversity and antibiotic resistance in water habitats: searching the links with the human microbiome. FEMS Microbiol Rev. 2014 Jul;38(4):761–778. https://doi.org/10.1111/1574-6976.12062
  56. Vaz-Moreira I, Nunes OC, Manaia CM. Diversity and antibiotic resistance patterns of Sphingomonadaceae isolates from drinking water. Appl Environ Microbiol. 2011 Aug 15;77(16):5697–5706. https://doi.org/10.1128/AEM.00579-11
  57. Vaz-Moreira I, Nunes OC, Manaia CM. Diversity and antibiotic resistance in Pseudomonas spp. from drinking water. Sci Total Environ. 2012 Jun;426:366–374. https://doi.org/10.1016/j.scitotenv.2012.03.046
  58. Vaz-Moreira I, Nunes OC, Manaia CM. Ubiquitous and persistent Proteobacteria and other Gram-negative bacteria in drinking water. Sci Total Environ. 2017 May;586:1141–1149. https://doi.org/10.1016/j.scitotenv.2017.02.104
  59. Viana AT, Caetano T, Covas C, Santos T, Mendo S. Environmental superbugs: the case study of Pedobacter spp. Environ Pollut. 2018 Oct;241:1048–1055. https://doi.org/10.1016/j.envpol.2018.06.047
  60. Wang DY, Abboud MI, Markoulides MS, Brem J, Schofield CJ. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med Chem. 2016 Jun;8(10): 1063–1084. https://doi.org/10.4155/fmc-2016-0078
  61. Willumsen P, Karlson U, Stackebrandt E, Kroppenstedt RM. Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Int J Syst Evol Microbiol. 2001 Sep 01;51(5):1715–1722. https://doi.org/10.1099/00207713-51-5-1715
  62. Zhang P, Hozalski RM, Leach LH, Camper AK, Goslan EH, Parsons SA, Xie YF, LaPara TM. Isolation and characterization of haloacetic acid-degrading Afipia spp. from drinking water. FEMS Microbiol Lett. 2009 Aug;297(2):203–208. https://doi.org/10.1111/j.1574-6968.2009.01687.x
  63. Zhang Y, Gu AZ, He M, Li D, Chen J. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera. Environ Sci Technol. 2017 Jan 03;51(1):570–580. https://doi.org/10.1021/acs.est.6b03132
  64. Zhao P, Zhang X, Du P, Li G, Li L, Li Z. Susceptibility profiles of Nocardia spp. to antimicrobial and antituberculotic agents detected by a microplate Alamar Blue assay. Sci Rep. 2017 May;7(1):43660. https://doi.org/10.1038/srep43660
DOI: https://doi.org/10.33073/pjm-2021-004 | Journal eISSN: 2544-4646 | Journal ISSN: 1733-1331
Language: English
Page range: 57 - 67
Submitted on: Oct 24, 2020
Accepted on: Jan 11, 2021
Published on: Mar 19, 2021
Published by: Polish Society of Microbiologists
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 AGATA SIEDLECKA, MIRELA J. WOLF-BACA, KATARZYNA PIEKARSKA, published by Polish Society of Microbiologists
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.