References
- Anesi A, Rubert J, Oluwagbemigun K, Orozco-Ruiz X, Nöthlings U, Breteler MMB, Mattivi F. Metabolic profiling of human plasma and urine, targeting tryptophan, tyrosine and branched chain amino acid pathways. Metabolites. 2019 Nov 01;9(11):261. https://doi.org/10.3390/metabo9110261
- Bi Y, Cox MS, Zhang F, Suen G, Zhang N, Tu Y, Diao Q. Feeding modes shape the acquisition and structure of the initial gut microbiota in newborn lambs. Environ Microbiol. 2019 Jul;21(7): 2333–2346. https://doi.org/10.1111/1462-2920.14614
- Briggs HM. International pig breed encyclopedia. Indianapolis (USA): Elanco Products Company; 1983.
- Büsing K, Zeyner A. Effects of oral Enterococcus faecium strain DSM 10663 NCIMB 10415 on diarrhoea patterns and performance of sucking piglets. Benef Microbes. 2015 Jan 01;6(1):41–44. https://doi.org/10.3920/BM2014.0008
- Chen L, Yin YL, Jobgen WS, Jobgen SC, Knabe DA, Hu WX, Wu G. In vitro oxidation of essential amino acids by jejunal mucosal cells of growing pigs. Livest Sci. 2007 May;109(1–3):19–23. https://doi.org/10.1016/j.livsci.2007.01.027
- Crespo-Piazuelo D, Estellé J, Revilla M, Criado-Mesas L, Ramayo-Caldas Y, Óvilo C, Fernández AI, Ballester M, Folch JM. Characterization of bacterial microbiota compositions along the intestinal tract in pigs and their interactions and functions. Sci Rep. 2018 Dec;8(1):12727. https://doi.org/10.1038/s41598-018-30932-6
- Dai ZL, Zhang J, Wu G, Zhu WY. Utilization of amino acids by bacteria from the pig small intestine. Amino Acids. 2010 Nov; 39(5):1201–1215. https://doi.org/10.1007/s00726-010-0556-9
- Diao S, Huang S, Chen Z, Teng J, Ma Y, Yuan X, Chen Z, Zhang H, Li J, Zhang Z. Genome-wide signatures of selection detection in three south China indigenous pigs. Genes (Basel). 2019 May 07; 10(5):346. https://doi.org/10.3390/genes10050346
- Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science. 2005 Jun 10;308(5728):1635–1638. https://doi.org/10.1126/science.1110591
- Etzold S, Kober OI, MacKenzie DA, Tailford LE, Gunning AP, Walshaw J, Hemmings AM, Juge N. Structural basis for adaptation of lactobacilli to gastrointestinal mucus. Environ Microbiol. 2014 Mar;16(3):888–903. https://doi.org/10.1111/1462-2920.12377
- Fadrosh DW, Ma B, Gajer P, Sengamalay N, Ott S, Brotman RM, Ravel J. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome. 2014;2(1):6. https://doi.org/10.1186/2049-2618-2-6
- Frese SA, Parker K, Calvert CC, Mills DA. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome. 2015 Dec;3(1):28. https://doi.org/10.1186/s40168-015-0091-8
- Goodrich JK, Davenport ER, Beaumont M, Jackson MA, Knight R, Ober C, Spector TD, Bell JT, Clark AG, Ley RE. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe. 2016 May;19(5):731–743. https://doi.org/10.1016/j.chom.2016.04.017
- Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R, Beaumont M, Van Treuren W, Knight R, Bell JT, et al. Human genetics shape the gut microbiome. Cell. 2014 Nov; 159(4):789–799. https://doi.org/10.1016/j.cell.2014.09.053
- Hancox LR, Le BM, Richards PJ, Guillou D, Dodd CE, Mellits KH. Effect of a single dose of Saccharomyces cerevisiae var. boulardii on the occurrence of porcine neonatal diarrhoea. Animal. 2015;9(11):1756–1759. https://doi.org/10.1017/S1751731114002687
- Hu J, Ma L, Nie Y, Chen J, Zheng W, Wang X, Xie C, Zheng Z, Wang Z, Yang T, et al. A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets. Cell Host Microbe. 2018 Dec;24(6):817–832.e8. https://doi.org/10.1016/j.chom.2018.11.006
- Huang MZ, Wang SY, Wang H, Cui DA, Yang YJ, Liu XW, Kong XJ, Li JY. Differences in the intestinal microbiota between uninfected piglets and piglets infected with porcine epidemic diarrhea virus. PLoS One. 2018 Feb 15;13(2):e0192992. https://doi.org/10.1371/journal.pone.0192992
- Javurek AB, Spollen WG, Ali AMM, Johnson SA, Lubahn DB, Bivens NJ, Bromert KH, Ellersieck MR, Givan SA, Rosenfeld CS. Discovery of a novel seminal fluid microbiome and influence of estrogen receptor alpha genetic status. Sci Rep. 2016 Mar;6(1):23027. https://doi.org/10.1038/srep23027
- Jeong HS, Kim DW, Chun SY, Sung S, Kim HJ, Cho S, Kim H, Oh SJ. Native Pig and Chicken Breed Database: NPCDB. Asian-Australas J Anim Sci. 2014 Oct;27(10):1394–1398. https://doi.org/10.5713/ajas.2014.14059
- Kim HB, Isaacson RE. The pig gut microbial diversity: understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet Microbiol. 2015 Jun;177(3–4):242–251. https://doi.org/10.1016/j.vetmic.2015.03.014
- Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013 Sep;31(9):814–821. https://doi.org/10.1038/nbt.2676
- Levy M, Blacher E, Elinav E. Microbiome, metabolites and host immunity. Curr Opin Microbiol. 2017 Feb;35:8–15. https://doi.org/10.1016/j.mib.2016.10.003
- Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006 Feb;124(4):837–848. https://doi.org/10.1016/j.cell.2006.02.017
- Li X, Cao Z, Yang Y, Chen L, Liu J, Lin Q, Qiao Y, Zhao Z, An Q, Zhang C, et al. Correlation between jejunal microbial diversity and muscle fatty acids deposition in broilers reared at different ambient temperatures. Sci Rep. 2019 Dec;9(1):11022. https://doi.org/10.1038/s41598-019-47323-0
- Li Z, Wu Z, Ren G, Zhao Y, Liu D. Expression patterns of insulin-like growth factor system members and their correlations with growth and carcass traits in Landrace and Lantang pigs during postnatal development. Mol Biol Rep. 2013 May;40(5):3569–3576. https://doi.org/10.1007/s11033-012-2430-1
- Liu Y, Chen X, Liu Y, Chen T, Zhang Q, Zhang H, Zhu Z, Chai Y, Zhang J. Metabolomic study of the protective effect of Gandi capsule for diabetic nephropathy. Chem Biol Interact. 2019 Dec;314:108815. https://doi.org/10.1016/j.cbi.2019.108815
- Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012 Sep;489(7415):220–230. https://doi.org/10.1038/nature11550
- Martinez-Guryn K, Leone V, Chang EB. Regional diversity of the gastrointestinal microbiome. Cell Host Microbe. 2019 Sep;26(3): 314–324. https://doi.org/10.1016/j.chom.2019.08.011
- Patil Y, Gooneratne R, Ju XH. Interactions between host and gut microbiota in domestic pigs: a review. Gut Microbes. 2020 May 3; 11(3):310–334. https://doi.org/10.1080/19490976.2019.1690363
- Pluske JR. Feed- and feed additives-related aspects of gut health and development in weanling pigs. J Anim Sci Biotechnol. 2013 Dec; 4(1):1. https://doi.org/10.1186/2049-1891-4-1
- Qu X, Gao H, Sun J, Tao L, Zhang Y, Zhai J, Song Y, Hu T, Li Z. Identification of key metabolites during cisplatin-induced acute kidney injury using an HPLC-TOF/MS-based non-targeted urine and kidney metabolomics approach in rats. Toxicology. 2020 Feb; 431:152366. https://doi.org/10.1016/j.tox.2020.152366
- Shang L, Deng D, Buskermolen JK, Janus MM, Krom BP, Roffel S, Waaijman T, van Loveren C, Crielaard W, Gibbs S. Multi-species oral biofilm promotes reconstructed human gingiva epithelial barrier function. Sci Rep. 2018 Dec;8(1):16061. https://doi.org/10.1038/s41598-018-34390-y
- Stokes CR. The development and role of microbial-host interactions in gut mucosal immune development. J Anim Sci Biotechnol. 2017 Dec;8(1):12. https://doi.org/10.1186/s40104-016-0138-0
- Thompson CL, Wang B, Holmes AJ. The immediate environment during postnatal development has long-term impact on gut community structure in pigs. ISME J. 2008 Jul;2(7):739–748. https://doi.org/10.1038/ismej.2008.29
- Turnbaugh PJ, Gordon JI. An invitation to the marriage of metagenomics and metabolomics. Cell. 2008 Sep;134(5):708–713. https://doi.org/10.1016/j.cell.2008.08.025
- Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006 Dec;444(7122):1027–1031. https://doi.org/10.1038/nature05414
- Wang T, Teng K, Liu Y, Shi W, Zhang J, Dong E, Zhang X, Tao Y, Zhong J. Lactobacillus plantarum PFM 105 promotes intestinal development through modulation of gut microbiota in weaning piglets. Front Microbiol. 2019 Feb 5;10:90. https://doi.org/10.3389/fmicb.2019.00090
- Wu G. Intestinal mucosal amino acid catabolism. J Nutr. 1998 Aug 01;128(8):1249–1252. https://doi.org/10.1093/jn/128.8.1249
- Xiao Y, Kong F, Xiang Y, Zhou W, Wang J, Yang H, Zhang G, Zhao J. Comparative biogeography of the gut microbiome between Jinhua and Landrace pigs. Sci Rep. 2018 Dec;8(1):5985. https://doi.org/10.1038/s41598-018-24289-z
- Yang H, Huang X, Fang S, He M, Zhao Y, Wu Z, Yang M, Zhang Z, Chen C, Huang L. Unraveling the fecal microbiota and metagenomic functional capacity associated with feed efficiency in pigs. Front Microbiol. 2017 Aug 15;8:1555. https://doi.org/10.3389/fmicb.2017.01555
- Yang L, Bian G, Su Y, Zhu W. Comparison of faecal microbial community of lantang, bama, erhualian, meishan, xiaomeishan, duroc, landrace, and yorkshire sows. Asian-Australas J Anim Sci. 2014 Jun 1;27(6):898–906. https://doi.org/10.5713/ajas.2013.13621